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A breeding blanket consists of:
 

A tritium breeding material (Li-containing alloy)
A neutron multiplier (Be)
A coolant (water, He and/or Pb-Li)
A structural material 

Breeding blanket: the kinetic energy of 14 MeV neutrons 
is transformed into heat that is transferred to a coolant.

ITER



Blanket solutions
Pb16Li & other possible candidates: 

Liquid breeder Li Pb16Li Flibe Li20Sn80

Melting point (ºC) 180 235 459 320
Density (g/cm3) 873K 0.48 8.98 2.0 6.0

Li Density (g/cm3) 873K 0.48 0.061 0.28 0.09

Breeding property Good Fairly good Neutron multipler 
required

Neutron multipler 
required

Chemical stability Active Middle Almost stable Almost stable
Corrosion Severe Middle HF exist severe ?
Tritium release form HT, T2 HT, T2 HT,T2 TF HT, T2

Giancarli L, Chuyanov V et al. 2007 Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials 
J. Nucl. Mater. 367–370, Part B, 1 1271-1280



■ Bubble nucleation & growth phenomena 

■ Tritium is absorbed into He bubbles*??

■ Residence time of eutectic atoms in a 
material surface. Diffusion inside the 
structural material, corrosion ?

*J. Fradera et al. Journal of Nuclear Materials 417 (2011) 739–742



Fig. 1: Solubility database is inadequate for design. Scatter reflects experimental 
approaches and measurement techniques applied. Knowledge of dynamic transport 
properties (diffusion, mass transfer, interface processes) is limited [1].

[1] RICAPITO I. Liquid Metal Blankets for Fusion Reactors,  Fusion Summer School, 10 Sept (2010)

Tritium (& He) behaviour



Why MD

[1] S. Plimpton, Fast Parallel algorithms for short-range molecular-dynamics, J. Comput. Phys. 117 (1995) 1.
[2] http://lammps.sandia.gov – LAMMPS — Large-scale Atomic/Molecular Massively Parallel Simulator.

MD simulations cost:

- Interatomic Potential     🡪 EAM “cheap”
- Number of atoms           🡪 10^6 “expensive”
- Real Time                      🡪 10 ns “expensive”

Price per core hour for the year 2020 is CZK 1,36 
(excluding VAT) (0,053 e) 

http://lammps.sandia.gov/


Pure metals

Fig2. Lithium S(Q) experimental (black) Fig. 2. Lead S(Q) experimental (black)



Pure metals

Fig.2. Lithium S(Q) calculated (red) 
& experimental results (black).

Fig. 2. Lead S(Q) calculated (red) 
& experimental (black)



Pb-Li Interatomic potential



Pb-Li Interatomic potential

Fraile A, Cuesta-López S, Caro A, Schwen D, Perlado J M. 2014. J. Nucl. Mater. 448 103

Fig.3 Volume of LiPb liquid alloys (T=1000 K). 
Experimental data (black squares). MD results 
calculated with 3 different potentials.

Eutectic: 16-17% Li



Pb-Li + He

ε σ σ

Table 1. L-J parameters for the He-He and 
He-Metal interactions. σc is the cutoff distance. 

The potential function for the L-J 12-6 potential 
for atoms i and j is written as:

where rij is the distance between the ith and the 
jth particle. 

For He-Pb we could not find a L-J potential, but 
knowing the L-J for Pb-Pb [44], and with 
Lorentz-Berthelot rules [45]

 the He-Pb values were calculated.

[42] Aziz R A, et al. 1979 J. Chem. Phys. 70, 4330.
[43] Dehmer P and Wharton L 1972. The Journal of Chemical Physics 57, 4821.
[44] Heinz H, at al 2008. J. Phys. Chem. C 112, 17281–17290
[45] Lorentz H A 1881. Annalen der Physik. 248 (1)



Critical Radius Rc

Fig. 4. Time evolution of the volume of 
bubbles with a different number of atoms 
(different initial R), for different Ts.

R < Rc 🡪 bubble dissolves

In Ref [48], number of atoms per stable 
bubble is estimated to be ~104.

Here we show that bubbles with N well 
below 500 atoms are stable (Rc ≥ 2nm).

[48] E. Mas de les Valls et al 2008 Lead–lithium eutectic material 
database for nuclear fusion technology. J. Nucl. Mater 376 353–357

� N =138 atoms

� N = 55 atoms 



Radii vs N

Fig 5. Radii (nm) vs number of He 
atoms for five different temperatures, 
600, 700, 800, 900 and 1000 K.

a1 = 0.66483 
a2 = 2.07151*10-4 
b1 = 0.44688 
b2 = 2.68516*10-5 

🡪 in the temperature range 700 to 1000 K, R(N, T) in Å : 

R(N,T) = (a1 + a2*T)*N^(b1+b2*T)

Perfect fits are obtained by fitting the curves to a simple 
allometric hyperbolic function 

y = a*x^b, 



Pressure

Fig 6. Pressure of He nanobubbles (GPa) vs 
number of atoms for two different 
temperatures, 600 and 900 K 

Fig 7. Pressure of He nanobubbles (in GPa) vs T for 
3 different bubble sizes, (Ri = 4a0, 8a0 & 12a0) 
according to our MD, and calculated using the 
Young-Laplace eq.

γ
γ



Caution! 

Fig. 8. Two examples of He nucleation; left, He-Pb σ =2.86 Å 
and right σ = 3.06 Å. T = 900 K. The snapshots correspond in 
both cases to t =10 ns.

** See Supplementary material in A. Fraile and T. Polcar. Nuclear Fusion 2020. 

Transport 
properties are quite 
potential dependent! 
**



Summary & Next (?)
for first time…
•Critical radius has been determined (≥500 atoms, R≥2nm)
•Volume vs N has been calculated

•                      R(N,T) = (a1 + a2*T)*N^(b1+b2*T)

•Pressure vs N (or V) has been evaluated
•Caution! Diffusion is highly dependent on the potentials 
•Next ? PbLi16 +He+T 

interaction of T with Li  is more complex to model
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Further reading

[1] Fraile A, Cuesta-López S, Caro. A, Perlado J. M. Journal of Nucl Mater. 440, 1–3, 2013, 98–103
[2] Fraile A, Cuesta-López S, Caro A, Schwen D, Perlado J M. 2014. J. Nucl. Mater. 448 103
[3] A. Fraile and T. Polcar. Volume and pressure of helium bubbles inside liquid Pb16Li. A molecular dynamics study. Nuclear Fusion 2020. 
[4] R. Serrano-Lopez et al., “Molten Salts Database for Energy Applications,” Chem. Eng. Process., 73, 87 (2013).
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Tritium 

Structure of a He bubble inside liquid Pb16Li 
(N=8583 atoms, T=700K, Rf~6nm). Box sliced to 
show the interior of the bubble. Red atoms Pb, 
blue atoms Li, yellow ones He. A two-atom thick 
shell of Pb atoms around the He bubble is  
observed.

Due to the expected bonding od T to Li 
[61-63] and the existence of Pb boundary 
at bubble-liquid alloy interface, we may 
conclude that the concentration of T 
inside the bubbles will be limited. 
Therefore, the effect of T on the volumes 
and pressures of the He bubbles presented 
here would be presumably negligible.  

[61] Kobayashi M et al 2012 Fusion Science and Technology 62, 1
[62] D. Masuyama, T. Oda, S. Tanaka, S. Fukada 2009. Chem. Phys. Lett. 483 214–218.
[63] N. Jakse and A. Pasturel 2014. Phys Rev B 89, 174302



Pb-Li Viscosity

Fig 1. Dynamic viscosity calculated using the EAM 
potential for liquid Pb16Li eutectic described in our previous 
work [38]. Experimental values are from [40] and [41].

[38] Fraile A, Cuesta-López S, Caro A, Schwen D, Perlado J M 2014 Interatomic potential for the compound-forming Li-Pb liquid alloy. J. Nucl. Mater. 448 103.
[40] Hubbertsey P, Sample T, Barker M, 1992 J. Nucl. Mater. 191–194 283
[41] Mogahed E A, Kulcinski G L, Bibliography of a Promising Tritium Breeding Material – Pb83Li17, University of Wisconsin, 1995 UWFDM-994.



Testing Li & Pb potentials III

■ Structural properties

Total structural factor

Pair distribution function

FT



LiPb MD

CMD 
vs

 ab initio [13]

Fig. 5. RDF gLiLi(r), gLiPb(r) and gPbPb(r) for the 
liquid Li80Pb20 (solid line - black) and Li50Pb50 
(broken line - red) alloys. T= 1075 K and 805 K 
for the liquid Li80Pb20 and Li50Pb50  alloys, 
respectively [1].

[1] Senda et al. The ionic structure and the electronic states of 
liquid Li-Pb alloys obtained from ab initio molecular dynamics 
simulations. J. Phys.: Condens. Matter 12, 6101 (2000)


