Modelling needs to support the FTER Research Plan and

Alberto Loarte on behalf of the Science Division Science, Controls, and Operation Department ITER Organization

With many contributions from Science Division members and collaborators

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 1/37

Outline of talk

- Introduction and overview of ITER Construction Status
- Overview of ITER Research Plan and staged approach
- □ ITER modelling needs
- **Role of HPC to support ITER Research Plan**

china eu india iapan korea russia usa

Introduction and Overview of Construction Status

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 3/37

ITER mission goals

- ITER shall demonstrate scientific & technological feasibility of fusion energy:
- > Pulsed operation:
- Q ≥ 10 for burn lengths of 300-500 s inductively driven current
- → Baseline scenario 15 MA / 5.3 T
- Long pulse operation:
 Q ~ 5 for long pulses up to 1000 s
- → Hybrid scenario ~ 12.5 MA / 5.3 T
- Steady-state operation:
 Q ~ 5 for long pulses up to 3000 s, with fully non-inductive current drive
- → Steady-state scenario ~ 10 MA / 5.3 T

LE LE HIT ALL

The ITER Research Plan describes the strategy to achieve these goals

Page 4/37

Progress on ITER Assembly and Commissioning

- Despite the challenges of the pandemic major progress in construction in 2020
- □ Tokamak building Crane Hall completed
- The Project has received all of the large components and tools required for assembly of the first tokamak sector
- \Box Cryostat Assembly has begun \rightarrow Start of Assembly Celebration
- □ The first 2 (out of 6) poloidal field coils are on-site being cold-tested
- Commissioning of some of the fundamental plant systems is underway or in preparation

Tokamak Building Construction: Crane Hall Enclosed

September 2019

June 2020

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 6/37

Successful Cryostat Base Installation + further work

Poloidal Field Coils On-site and CS on the way

The divertor coils PF6 and PF5 are fabricated and undergoing cold tests

- Central Solenoid Module 2 is Ready for Testing
- Module 1 to be shipped to ITER site soon

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 8/37

First Vacuum Vessel Sector + 4 TF coils on-site

- Vacuum Vessel Sector 6 passed He leak tests – Metrology and magnetic diagnostic installation on-going
- Sector 7 95 % complete

Overview of ITER Research Plan (IRP) and staged approach

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 10/37

ITER Research Plan (IRP)

□ R&D Strategy to achieve project's goals with distinct phases :

- > Integrated Commissioning, First Plasma, Engineering Operation
- Pre-Fusion Operation phase (H/He)
- Fusion Power Operation (D and DT) → Achievement of high Q goals

Integrated Commissioning-First Plasma-Engineering Operation

1. Integrated Commissioning

- □ Integrated commissioning of:
 - Plant systems (central control systems, power supplies, cooling/baking, vacuum, cryogenics etc.)
 - Magnet systems to level required for FP (nominally 50% maximum current)
 - ECRH, diagnostics, fuelling, GDC, PCS systems
- Magnetic diagnostic calibration
- 2. First Plasma
 - □ 100 kA/ 100 ms milestone with ECH assisted start-up (P. de Vries, NF 2019)

3. Engineering Commissioning

- □ Performance tests of all Magnet systems to full current
- Definition of strategy to align plasma facing components
- Studies of Ohmic start-up (for 1.8 T)

PFPO-I

Page 13/37

iter china eu india japan korea russia usa

PFPO-II

Fusion Power Operation (D/DT)

1st Spanish Fusion HPC Workshop – 27th November 2020

ITER modelling needs

 1^{st} Spanish Fusion HPC Workshop – 27^{th} November 2020

Page 16/37

ITER modelling needs

ITER modelling needs are wide \rightarrow many (but not all) need HPC support

- IMAS framework
- Modelling of ITER scenarios
 - IRP refinement and development of control strategies (Q = 10 & Q = 5 examples)
 - Assessment of scenarios (Fast particle stability, T-control, ...)
- Experimental data analysis
 - Synthetic diagnostics to prepare analysis and assess diagnostic performance
 - High level diagnostic analysis including measurement consistency
- Detailed modelling of specific plasma processes (usually HPC-supported)
 - Disruption and Disruption Mitigation (MHD simulations, Power fluxes and impact on materials, ...)
 - ELM control (MHD simulations, Fast particle losses, Power fluxes, ...)

▶

Framework for ITER modelling and Analysis (IMAS)

- The Integrated Modelling & Analysis Suite (IMAS) is the framework that will be used for all physics modelling and analysis at ITER
- Uses a modular approach that builds around a standardized data representation that can describe both experimental and simulation data for any device
- Inclusion of machine description data allows development and validation of machinegeneric components and workflows within ITER Members' programmes before application on ITER
 - > Allows ITER Members to contribute to (and benefit from) developments including:
 - High Fidelity Plasma Simulator and its components
 - Data processing and analysis tools
- □ Tutorials are available at https://imas.iter.org

Data Model

- Data Dictionary defines structuring and naming of data
 - Same data structures used for both experimental and simulation data
 - Applicable to all devices (includes Machine Description data) not restricted to ITER
 - Uses a tree structure (allows re-use of names)
 - Automated definition of data structures for all supported languages
 - C/C++, Fortran, Python, Java and Matlab
 - Well-defined lifecycle procedures allow collaborative evolution of Data Model
- Interface Data Structures (IDSs)
 - Standardised entities for use between software components and storage
 - Examples include plant systems (*diagnostics, heating systems*) and physics concepts (*equilibrium, core plasma profiles*)
 - Contains traceability information (provenance) and self-description information
 - Supports modularity and facilitates interchange of components from contributors

Using Interface Data Structures (IDS) to couple codes

- The IMAS Access Layer makes coupling codes using IDSs straightforward, even if they are written in different languages
 - Currently support: Fortran, C++, Python, Java, MATLAB
- □ This is the basis upon which modular workflows such as plasma simulators and data processing chains will be created

Integrated physics assessment of Q = 10 DT scenario - I

- Free-boundary equilibrium code DINA and the JINTRAC suite of codes adapted to IMAS and used to simulate the 15 MA / 5.3 T DT Q=10 ITER baseline scenario
- Scenario assessed for entire evolution from early ramp-up phase (from X-point formation) until late ramp-down phase (to X-point-limiter transition) by integrated simulations:

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 21/37

tera china eu india japan korea russia usa

Integrated physics assessment of Q = 10 DT scenario - II

JINTRAC integrated modelling used to optimized self-consistent fuelling and control of divertor conditions in stationary and transient phases (L-H and H-L)

Page 22/37

Q = 5 steady steady-state plasma at 10 MA

Conditions identified by 1.5-D ASTRA modelling

- ✓ EPED1+SOLPS used for pedestal and boundary
- Q=5.02, f_{GW}=0.69
- H₉₈=1.52, β_N=3.02
- q_{min}=1.23
- Relatively high I_i(3)~0.87 mainly due to 40 MW NBI (+ 20-30 MW ECH)

china eu india japan korea russia usa

Polevoi – NF 2020

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 23/37

Stability Analysis for Q = 5 plasma

 \Box KINX stability analysis shows that low-n (=1-5) ideal MHD modes ($\beta_N < \beta_{N \text{ limit}}$) by varying the ECCD location (ρ_{ECCD} =0.35 is ok)

Details is in Polevoi – NF 2020

china eu india japan korea russia usa

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 24/37

Optimization of access to Q = 5 steady state

Scenarios (Scenario Phases) for T removal

- Edge plasma modelling to assess operational strategies for T removal
- > Be deposition expected to occur dominantly on high field side together with T co-deposited
- Operation with raised strike point considered to remove T (by surface heating)
- > SOLPS-ITER used to assess effectiveness of strategy \rightarrow not viable because T_{surf} is too low

Synthetic Diagnostics

- □ Synthetic diagnostics modelling required for
 - Diagnostic design including performance assessments
 - Development of control algorithms
 - Development of data processing and analysis workflows
- □ Example for ITER Visible Spectroscopy Reference System (VSRS)

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 27/37

High level diagnostic analysis

□ High level diagnostic analysis being developed for ITER

- Best measurement for plasma parameters from set of diagnostic
- Systematic evaluation of errors and identification of diagnostics issues

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 28/37

CPA china eu india japan korea russia usa

HPC support to IRP

- Detailed modelling of specific physics processes impacting IRP development strategy
 - Disruption EM and Thermal loads on VV and in-vessel components
 - Disruption mitigation
 - ELM control and associated scenario issues
- ❑ Support to integrated modelling and data analysis
 - Development of neural networks to accelerate physics models to overcome bottlenecks
 - Increase parallelization of models in integrated modelling for HPC simulations (e.g. H&CD workflow)

Disruption EM and Thermal loads on VV and in-vessel components

□ Prediction of disruption loads is very important but predictions will need to be validated as part of IRP before operating at 15 MA → validation strategy needs to be defined with low risk to components

Energy Deposition Analysis: Workflow (J. Coburn AAPPS-DPP 2020)

Disruption Mitigation

- □ Effective disruption mitigation essential for IRP → highest priority R&D
 □ Concept:
 - > Dissipating thermal and magnetic energy \rightarrow radiation
 - > Preventing runaway electron formation \rightarrow increasing plasma density
- **Technique:**
 - > Injection of Ne, (Ar) and D₂ through Shattered Pellet Injection

Disruption mitigation modelling support for ITER

- ➤ Large amount of material → impact of injection from multiple locations
- Effectiveness of pellet fragment sizes for various mitigation missions
- Concept of runaway electron avoidance and runaway energy dissipation

Large experimental and modelling effort coordinated by ITER DMS Task Force

1st Spanish Fusion HPC Workshop – 27th November 2020

ELM control modelling

ELM control modelling includes processes leading to ELM control (MHD) but also impact on plasma scenarios

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 33/37

iter china eu india japan korea russia usa

3-D fields for ELM control and fast particle losses

➤ 3-D fields for ELM control increase fast particle NBI loses due to large edge losses → edge magnetic configuration → optimization is required for integration with scenario

ITER-LOCUST Akers & Ward

ITER-ASCOT L. Sanchis sub. NF 2020

#Case	Max losses (%)		
1	13.3		
2	0.03		
3	8.1		
4	8.4		
5	9.2		
6	12.6		

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 34/37

ter china eu india japan korea russia usa

HPC support to integrated modelling for IRP - I

Higher fidelity workflows can run parallel modules to speed up computations

1st Spanish Fusion HPC Workshop – 27th November 2020

M. Schneider APS 2020

china eu india japan korea russia usa

iter

The H&CD workflow

Page 35/37

HPC support to integrated modelling for IRP

- ❑ Higher fidelity models can be represented by neural networks and used in integrated modelling without penalty of speed → better description of plasma behaviour in ITER scenarios (scenario design and control)
- ➤ Training database must cover wide range of parameters → HPC support
- Successfully developed for transport modelling, pedestal modelling, NBI heating source,
- Of significant potential for ITER (edge plasmas, diagnostic analysis, ...)

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 36/37

Conclusions

- □ ITER construction is progressing well despite challenges of present pandemic → thanks to strong commitment from ITER Organization and ITER Members
- □ ITER Research Plan requires modelling support to:
 - Develop and refine ITER scenarios
 - Prepare workflows for analysis of experimental data
 - Assess specific aspects of ITER scenarios and their optimization
- HPC should support this effort both by sophisticated modelling of specific processes (MHD, fast particles, PWI, etc.) but also by supporting higher fidelity integrated modelling simulations

Back-up slides

1st Spanish Fusion HPC Workshop – 27th November 2020

Page 38/37

Redistribution of fast ions by instabilities

LIGKA/HAGIS Python workflow to assess fast particle stability in ITER scenarios

Frequencies of predicted Beta-induced Alfvén Eigenmodes (fast particle instabilities) during ITER pulse

Transport of fast ions by instabilities changes evolution of plasma profiles → work underway to incorporate these effects in plasma scenario simulations (ITPA/ISFN)

iter china eu india japan korea russia usa

IMAS Data Model (3.30.0)

amns_data	disruption	langmuir_probes	reflectometer_profile
barometry	distribution_sources	lh_antennas	sawteeth
bolometer	distributions	magnetics	sdn
bremsstrahlung_visible	ec_launchers	mhd	soft_x_rays
calorimetry	ece	mhd_linear	spectrometer_mass
camera_ir	edge_profiles	mse	spectrometer_uv
camera_visible	edge_sources	nbi	spectrometer_visible
charge_exchange	edge_transport	neutron_diagnostic	spectrometer_x_ray_crystal
coils_non_axisymmetric	em_coupling	ntms	summary
controllers	equilibrium	numerics	temporary
core_instant_changes	gas_injection	pellets	thomson_scattering
core_profiles	gyrokinetics	pf_active	tf
core_sources	hard_x_rays	pf_passive	transport_solver_numerics
core_transport	ic_antennas	polarimeter	turbulence
cyrostat	interferometer	pulse_schedule	wall
dataset_description	iron_core	radiation	waves
dataset_fair			

Extension of Data Dictionary mainly through application to new Use Cases and user feedback. For more details, see links from <u>https://imas.iter.org</u>.

Page 40/37

3-D fields for ELM control and power fluxes

- Radiative divertor operation with 3-D resonant fields required at high $P_{aux}+P_{aux}$ and I_{n} \geq in ITER
- q_{div} modification by 3-D fields and radiative divertor exhaust \rightarrow understanding of connection between field and fluxes required

china eu india japan korea russia usa

1st Spanish Fusion HPC Workshop – 27th November 2020

Reference (low n)

+ RMPs (low n)