UK Atomic Energy Authority

1st Spanish Fusion HPC Workshop

Evaluating Exascale FEA Backends for Fusion Digital Twins

2020-11-27 Aleksander J. Dubas

Outline

Motivation

Selection Criteria

Shortlist

Benchmarking Methodology

Results

Section 1

Motivation

Why Digital Twin?

UK Atomic Energy Authority

Image Copyright © Oak Ridge National Laboratory, 2016 CC-BY-2.0

Complex Multiphysics

Two Approaches

Single tightly coupled simulation

- One single program
- Solve a large linear system for all the physics involved
- Ensures capture of strongly coupled physical phenomena
- Solution may be numerically stiff

Many loosely coupled simulations

- Use best in class for each domain
- Couple together with a third party library and iterate
- Temporal accuracy may suffer
- Easy to decouple irrelevant physics

Section 2

Selection Criteria

1 - Parallel First

Exascale simulation

Designed as a parallel code from the outset

Optimised for HPC environment

2 - Permissively Licensed

Any location, including w/o internet

Any number of processes

Extension and modification permitted

Open source?

UK Atomic Energy Authority

What does the exascale look like?

Vectorised? Mixed-mode? GPU?

4 - Extensible

UK Atomic Energy Authority

Open to external contribution

Good software engineering practices

User community - forums, mailing lists, IRC, workshops and tutorials

Documentation - for both users and developers

Compiled Language?

UK Atomic Energy Authority

Interpreted languages incur an overhead

Example: FEniCS vs. DOLFIN

At scale, overheads add up

Stable API, Actively Developed

A reliable library must have a stable API, thus not in 'alpha' or 'beta' development

To be actively supported, it must be actively developed

Section 3

Shortlist

Initial Survey and Elimination

Initial survey found 35 potential candidates

Eliminated those the were:

- not parallel first or HPC oriented,
- in early development,
- poorly supported,
- inextensible or
- abandoned.

Benchmarking Shortlist

deal.ii DUNE DOLFIN libMesh MFEM MOOSE Nektar++ www.deallii.org www.dune-project.org fenicsproject.org libmesh.github.io mfem.org mooseframework.org www.nektar.info

Section 4

Benchmarking Methodology

Test Problem

Steady State: Poisson Equation

Time Dependent: Heat Equation

 $-\nabla^2 u = f$

 $\frac{\partial u}{\partial t} - \nabla^2 u = f$

using Method of Manufactured Solutions (MMS) to verify correctness

UK Atomic Energy

Geometry and Mesh

۲ ۲_×

deal.ii ruled out (designed for quad/hex meshes)

Section 5

Results

Memory Usage

UK Atomic Energy Authority

Nektar++ ruled out (memory usage)

Scaling (Total Time)

藏

Scaling (Solver Time)

Wall Time

藏

Honourable Mentions

MFEM - Highly portable, few dependencies, clear and simple build process

MOOSE - Multiphysics coupling design, many physics domains already implemented

Thank You For Your Attention

UK Atomic Energy Authority

Any Questions?

Contact: aleksander.dubas@ukaea.uk