Geometric Considerations for Zonal Flow Activity in Stellarators Toward Improved Transport Modeling

- **Carlos D. Mora Moreno¹**, J.H.E Proll¹, G.G. Plunk², P. Xanthopoulos², Yu. Turkin², J. Geiger²
 - ¹Eindhoven University of Technology, Eindhoven, The Netherlands ²Max-Planck Institute for Plasma Physics, Greifswald, Germany

Max-Planck-Institut für Plasmaphysik

Understanding turbulence dynamics

- Turbulence dominates transport.¹
- Saturation mechanisms?
- Stellarator geometry –> decisive.
- Simulations: GENE code.^{2,3}
 - ITG, adiabatic electron response.
 - Local: Flux tube domain.
- Craft a predictive model:

 $\chi_i = f(Geometry, Linear physics)$

¹ J.A. Alcusón et al, Proceedings of 45th EPS Conference on Plasma Physics, (Vol. 42A, pp. 841-844). [P2.1088] European Physical Society. ² F. Jenko et al, Physics of Plasmas 7, 1904 (2000). ³ See: http://ww.genecode.org for details

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

What are the geometric features that influence saturation?

Outline

- Geometry in Wendelstein 7-X
- Gyrokinetic turbulence modeling
 - Reduced transport modeling

Summary

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Configurations of Wendelstein 7-X studied

- Experimental flexibility allows:
 - High lota
 - Standard configuration
 - Low lota

where:
$$\frac{\iota}{2\pi} = \frac{poloidal\ turns}{toroidal\ turns} = \frac{1}{q}$$

- Impact sample frequency of:
 - Good / bad curvature
 - Periods of geodesic curvature

Low lota

High lota

Curvature determines turbulence evolution

Curvature definition:

 $\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Curvature determines turbulence evolution

Curvature definition:

 $\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$

Curvature determines turbulence evolution

Curvature definition:

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$$

where:

 $\kappa_N = \kappa \cdot rac{\mathbf{n}}{|n|}$, $\kappa_G = \kappa \cdot rac{\mathbf{g}}{|g|}$ and:

 $\boldsymbol{n}\equiv
abla \Psi$ $\boldsymbol{g}\equiv (\mathbf{B} imes
abla \Psi)$

Curvature features in Wendelstein 7-X

Curvature definition:

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$$

where:

 $oldsymbol{\kappa}_N = oldsymbol{\kappa} \cdot rac{\mathbf{n}}{|n|} \ , \ oldsymbol{\kappa}_G = oldsymbol{\kappa} \cdot rac{oldsymbol{g}}{|g|}$ and:

 $oldsymbol{n}\equiv
abla\Psi$, $oldsymbol{g}\equiv(\mathbf{B} imes
abla\Psi)$

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Curvature features in Wendelstein 7-X Curvature definition: where: $oldsymbol{\kappa}_N$ $oldsymbol{\kappa}_N = oldsymbol{\kappa} \cdot rac{\mathbf{n}}{|n|} \hspace{0.2cm}, \hspace{0.2cm} oldsymbol{\kappa}_G = oldsymbol{\kappa} \cdot rac{oldsymbol{g}}{|g|}$ Magnetic field lines and: $oldsymbol{n}\equiv abla \Psi$, $oldsymbol{g}\equiv (\mathbf{B} imes abla \Psi)$ κ_G

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$$

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Curvature features in Wendelstein 7-X

Curvature definition:

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \boldsymbol{\kappa}_N + \boldsymbol{\kappa}_G$$

where:

 $oldsymbol{\kappa}_N = oldsymbol{\kappa} \cdot rac{\mathbf{n}}{|n|} \ , \ oldsymbol{\kappa}_G = oldsymbol{\kappa} \cdot rac{oldsymbol{g}}{|g|}$ and:

> $\boldsymbol{g}\equiv (\mathbf{B} imes
> abla\Psi)$ $oldsymbol{n}\equiv
> abla\Psi$

Different iota: ballooning angle -> arc length

Primary modes are localized in "bad" curvature regions

- Negative regions: instability growth.
- High particle drifts

Primary modes are localized in "bad" curvature regions

- Negative regions: instability growth.
- High particle drifts
- Exact eigenfunctions peak at the center.

Primary modes are localized in "bad" curvature regions

- Negative regions: instability growth.
- High particle drifts
- Exact eigenfunctions peak at the center.
- Gaussian envelope: Drift well.

Mode coupling through curvature is characterized by periodicity

- K_G couples k_y =0 mode to acoustic wave.
- Geodesic scale: k_{II} of the mode.
- Characteristic geodesic scale L_{G.}

 $\kappa_{G,fit} = |\kappa_G| \sin\left(2\pi \ \ell/L_G\right)$

Geometry in Wendelstein 7-X

Gyrokinetic turbulence modeling

Reduced transport modeling

Summary

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Linear estimates of transport ignore saturation

- ITG-driven turbulence.
- Simple quasilinear model:

$$\chi_{QL} = C_1 \sum_{k_y} \frac{\gamma_{k_y}}{k_y^2} \times \Delta k_y$$

Linear estimates of transport ignore saturation

- ITG-driven turbulence.
- Simple quasilinear model:

$$\chi_{QL} = C_1 \sum_{k_y} \frac{\gamma_{k_y}}{k_y^2} \times \Delta k_y$$

Linear estimates of transport ignore saturation

- ITG-driven turbulence.
- Simple quasilinear model:

$$\chi_{_{QL}} = C_1 \sum_{k_y} \frac{\gamma_{k_y}}{k_y^2} \times \Delta k_y$$

- Pre-factor C₁ clearly depends on geometry.
- Saturation dynamics to be understood.

ITG-driven turbulence induces Zonal Flows

- Primary instability: initial eddies.
- Secondary instability:
 - Poloidal elongated structures.
 - Saturation through shearing.

ITG-driven turbulence induces Zonal Flows

- Primary instability: initial eddies.
- Secondary instability:
 - Poloidal elongated structures.
 - Saturation through shearing.

• Curiosity:

Image credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

Saturation time scales dictate dynamics of the linear zonal flow response

• Turbulence saturation time.

Saturation time scales dictate dynamics of the linear zonal flow response

- Turbulence saturation time.
- Linear potential response.
- Characteristics of interest:
 - Residual potential.
 - Transient damping.

-0.2

Saturation time scales dictate dynamics of the linear zonal flow response

- Turbulence saturation time.
- Linear potential response.
- Characteristics of interest:
 - Residual potential.
 - Transient damping.

Saturation time scales dictate dynamics of the linear zonal flow response

- Turbulence saturation time.
- Linear potential response. lacksquare
- Characteristics of interest:
 - Residual potential.
 - Transient damping.
- Residual is very small. lacksquare
- Transient damping is comparable.

Saturation time scales dictate dynamics of the linear zonal flow response

- Turbulence saturation time.
- Linear potential response. \bullet
- Characteristics of interest:
 - Residual potential.
 - Transient damping.
- Residual is very small. lacksquare
- Transient damping is comparable.

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

Damping is determined by geodesic curvature

- Weaker damping –> Longer-lived Zonal Flows.
- Low lota configuration might see lower zonal flow activity.

How do zonal flows impact saturation? A numerical experiment

20

5

- Zero zonal flow contrib. at each time step.
- Transport delta:

$$\frac{\Delta \chi}{\chi_{ZF}} = \frac{\chi_{no-ZF} - \chi_{ZF}}{\chi_{ZF}}$$

Configuration impact?

How do zonal flows impact saturation?

- Zero zonal flow contrib. at each time step.
- Low lota depends on zonal flows to reach saturation.

How do zonal flows impact saturation?

- Zero zonal flow contrib. at each time step.
- Low lota depends on zonal flows to reach saturation.
- Zonal Flows make no difference for High lota.

Linear predictions don't help...

- Low lota depends on zonal flows to reach saturation.
- Zonal Flows make no difference for High lota.

4

3

 $\mathbf{2}$

Linear predictions don't help...

4

3

 $\mathbf{2}$

0

- Low lota depends on zonal flows to reach saturation.
- Zonal Flows make no difference for High lota.

What about zonal flow generation?

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

The mode distribution influences zonal flow generation

- Secondary modes depend on primary.
- Strongest mode.

The mode distribution influences zonal flow generation

- Secondary modes depend on primary.
- Strongest mode.
- Space filling factor:¹
 - Estimates toroidal distribution.
 - Configuration and gradient -dependent.

¹ G.G. Plunk et al, Physical Review Letters, 118(10), 105002 (2017).

The mode distribution influences zonal flow generation

- Secondary modes depend on primary.
- Strongest mode.
- Space filling factor:¹
 - Estimates toroidal distribution.
 - Configuration and gradient -dependent.

¹ G.G. Plunk et al, Physical Review Letters, 118(10), 105002 (2017).

The mode distribution influences zonal flow generation

- Very peaked modes in High iota.
- Mode is spread more evenly in Low lota.

Saturation dynamics within configurations stand apart

- Evenly spread primary modes: efficient generation of zonal flows.
- Low lota: Stronger dependence on zonal flows for saturation.

- Geometry in Wendelstein 7-X
- Gyrokinetic turbulence modeling
 - Reduced transport modeling

Summary

C.D. Mora Moreno | Geometric Considerations for Zonal Flow Activity in Stellarators

- Zonal flow damping: inverted predictions.
- L_G: Rapid prediction of damping.
- Improve phenomenological transport models.¹

¹ M. Nunami et al, Physics of Plasmas, 20(9), 092307 (2013).

- Zonal flow damping: inverted predictions.
- L_G: Rapid prediction of damping.
- Improve phenomenological transport models.¹
- K_N -> σ

¹ M. Nunami et al, Physics of Plasmas, 20(9), 092307 (2013).

- Zonal flow damping: inverted predictions.
- L_G: Rapid prediction of damping.
- Improve phenomenological transport models.¹
- K_N -> σ
- **Drift well:** proxy for σ .

¹ M. Nunami et al, Physics of Plasmas, 20(9), 092307 (2013).

- Zonal flow damping: inverted predictions.
- L_G: Rapid prediction of damping.
- Improve phenomenological transport models.¹
- K_G -> σ
- Drift well: proxy for σ .
- Next: Extend QL estimate.

$\chi_i = f(Geometry, Linear physics)$

¹ M. Nunami et al, Physics of Plasmas, 20(9), 092307 (2013).

Summary

- Basis for improved transport modeling dwells in the field geometry.
- (Linear) Damping predictions are in disagreement with observations.
- Low lota: Zonal flows have a bigger impact on transport.
- High lota: Highly localized modes saturate through other mechanisms.
- Space-filling factor σ: Zonal flow generation.
- Outlook: Build a reduced model with geometry features and linear estimates.

Transient damping rate as a function of the wavenumber

- Zonal flow damping rate depends on the radial lengthscale
- Regions of interest: shearing scales and computational "box" size
- No significant variation observed at large scales
- Small scales reflect the same trend

0.8

 ~ 0.6 Damping rate 0.4 0.2

0.0

Linear zonal flow response and the effect of the upper integration limit

