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Motivation: neoclassical E, and T, in stellarators (

e Understanding impurity transport is crucial for the development and success of
stellarators at a reactor scale.
* At reactor relevant conditions of T, ~ T,, neoclassical radial electric field E, in
stellarators is large and negative - impurity accumulation.
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Motivation: neoclassical E, and T, in stellarators Q)

e Understanding impurity transport is crucial for the development and success of
stellarators at a reactor scale.

e At reactor relevant conditions of T, ~ T,, neoclassical radial electric field in

stellarators is large and negative - impurity accumulation.
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* Electron root (Er>0) = the peaking factor V/D~0(10%) = hollow impurity density.
* lon root (Er<0) = the peaking factor V/D~-0(102?) = peaked impurity density.
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Motivation: the peaking factor ()

e Understanding impurity transport is crucial for the development and success of

stellarators at a reactor scale.
e At reactor relevant conditions of T, ~ T,, neoclassical radial electric field in

stellarators is large and negative - impurity accumulation.
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The size of D and 7, in experiments
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* Experimental diffusion coefficient (D,) and confinement time (7,) in W7-X are
orders of magnitude above neoclassical predictions.
* Absence of impurity accumulation in most OP1* scenarios [Klinger NF'19].

[Langenberg PoP’20]
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The code stella [BarnesJCP’19].
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« Of flux tube electrostatic gyrokinetic stellarator code of recent
development at U. Oxford

* Operator splitting and implicit treatment of parallel streaming and
acceleration terms = efficient treatment of kinetic electrons (larger time-
step allowed) in multispecies simulations.

* Recently benchmarked against GENE [A. Gonzalez-Jerez, in progress].
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(¢) For the bean
flux tube (a=0),

| growth rate as a

function of kp; for
k.p ;=0 for an ITG
case with a/L;=3.0.

(¢) For the bean
flux tube (a=0),
growth rate as a
function of kp,for
k,p;=0.0 for a TEM
case with a/L,.=3.0.
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(™) For the bean flux tube (a=0), ion heat flux
evolution for an ITG case with a/L;;=3.0.
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Linear properties of background instabilities (@)

« Gradients are set such that a/Lr, afLr. afLn, =a/Ln. Tc/T:
representative ITG, TEM and ETG ITG 40 0.0 0.0 1.0
instabilities are isolated. LEN0.07 0.0 0 10

e W7-X (E”Vl) @ r/a=0.8. Species Art6t wier widt

* Trace n, level content of impurities.
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* Broad y-spectrum of ITG mode with various changes of eigenmode structure.
* More unstable TEM than ITG mode. More unstable ETG than TEM.
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D,,, D, and C, for trace Ar'6*, W16+ W44+ ©
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* Impurity transport coefficients independent on impurity parameters, like
gradients. Impurities do not participate in quasi-neutrality when they are trace.
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ITG turbulence drives outward diffusive transport more efficiently than TEM.
Thermo-diffusion drives, for both turbulence types, inward impurity flux.
ITG = pinch contribution , TEM = anti-pinch contribution [Alcusén in
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Flux spectra and background turbulence
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* ITG-driven turbulent impurity flux has stronger localization along k, and k, than
TEM-driven impurity flux.

ITG, Ar16+v (a/anv a/L'Tz):(5> 0) TEM, A1‘16+7 (a/an a/LTz):(Sv 0)

kypi
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Flux spectra and background turbulence ()

* ITG-driven turbulent impurity flux has stronger localization along k, and k, than

TEM-driven impurity flux.
« TEM case has noticeable contributions to the total flux at the highest k p; simulated.
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Flux spectra and background turbulence

(I'z/TyBi)/(nz/n;)
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ITG-driven turbulent impurity flux has stronger localization along k, and k, than
TEM-driven impurity flux.
TEM case has noticeable contributions to the total flux at the highest k p; simulated.
Energy cascade, in both ITG and TEM cases, follows a power low with exponent -7/3
[Barnes PRLU'11] = intrinsically 3D Turbulence
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Flux spectra and background turbulence {;)
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ITG-driven turbulent impurity flux has stronger localization along k, and k, than
TEM-driven impurity flux.

TEM case has noticeable contributions to the total flux at the highest k p; simulated.
Energy cascade, in both ITG and TEM cases, follows a power low with exponent -7/3
[Barnes PRLU'11] = intrinsically 3D Turbulence
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D,,, D,, and C, for trace Ar16*, W16+ 44+ ®)
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* The experimental value of D, is reasonably close to ITG and TEM simulations.

* ITG turbulent driven I'; produces larger D,, than TEM turbulence.

* Convection (V) gets negative contribution from both D,, and C, in the ITG case,
and opposite contributions from D,, and C, in TEM case.

* The large D,, supports a low value of the peaking factor (V/D) = nearly flat n,

profiles, at worst!
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What if impurities are non-trace? ()
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(I'z/Typi)/(nz/n;)

Trace concentration allows to assume impurity transport coefficients independent
on impurity parameters, like gradients. Impurities do not participate in quasi-
neutrality.

How far from linear does, for instance, Z =2 make I'; (n,)? Not far.

The flux deviates from linear trend in opposite directions for ITG than for TEM.
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Trace concentration allows to assume impurity transport coefficients independent
on impurity parameters, like gradients. Impurities do not participate in quasi-
neutrality.

How far from linear does, for instance, Z =2 make I'; (n,)? Not far.

The flux deviates from linear trend in opposite directions for ITG than for TEM.
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40 * These simulations considered kinetic ions,
30 electrons and impurities.
ITG  What is going on with the ion heat flux
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How Q; is affected by the presence of impurities? ()

* Forthe ITG case, including W#** at Z_=2 yields a reduction of the ion heat flux of
approximately 30%.

50

_____ w/ WH* at Zog = 1.0 * The mere presence of the impurity
—o— W/ WH at Zg = 2.0 produces a modest fall of Q, even if

40 the profile is flat.

Q; decreases further with the
strength of the impurity density
gradient up to a constant value.
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* In equilibrium: the turbulence will
determine V/D, and this will, in
turn set the reduction of Q..
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How Q, is affected by the presence of impurities?
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* For the ITG case, including W*** and scanning Z yield a reduction of the ion heat

flux of up to approximately 40% for Z_=4.

w/ WH at Zg =1.0. a /L, =5.0

ny

—— w/ WH at Zg > 1.0, a/Ln, =5.0

Q, dependence on Z 4 is strong at
low to moderate values of Z 4 a
leads to a noticiable Q, reduction.

As in the n’, scan, as Z i increases
Q, monotonically falls, although at
a more moderate rate at higher
values of Z .
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How Q; is affected by the presence of impurities? ()

* For the ITG case, including W*** and scanning Z yield a reduction of the ion heat
flux of up to approximately 40% for Z_=4.

* Q, dependence on Z_ is strong at
_____ w/ WH at Zug = 1.0, a/Ly, = 5.0 low to moderate values of Z 4 a

nyz

—o— w/ W at Zg > 1.0, a/L,, = 5.0 leads to a noticiable Q, reduction.

* Asinthen’,scan, as Z ;increases
Q, monotonically falls, although at
a more moderate rate at higher
values of Z .

* Does the deliberate injection of

101 impurities, which may introduce
transiently stronger density
0 | | | gradients and larger Z_, lead to a
I 2 74 3 4 stronger Q, reduction too?
o

Experiments indicate so [Lunsford
APS-DPP 2020]
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SUMMARY

 stella mixed implicit-explicit treatment of the GK egs. has allowed us to
address with several multispecies simulations the question about the turbulent
transport of impurities in stellarators.

* D,, carries the largest contribution to the total impurity flux.

* The values of D,;, humerically obtained are reasonably close to those reported in
W?7-X experiments [Geiger NF'19].

* ITG/TEM turbulence drives inward/outward impurity convection via C, =

peaked/hollow n,

* For impurity concentrations at moderate Z_, the dependence of the impurity flux
on the impurity density gradient is close to linear.

* We have found numerically that a highly charged heavy impurity, like W44+, at
non-trace concentration provokes a substantial reduction of the turbulent ion

heat flux.
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How Q, is affected by the presence of impurities? ()

\=

* For the ITG case, including W*** and scanning Z yield a reduction of the ion heat
flux of up to approximately 40% for Z_=4.

! SUMMARY ong at
eff
* D,, carries the largest contribution to the total impurity flux \ iction.

* The values of D,, numerically obtained are reas "E&"\O aiose  feases

reported in W7-X experiments [Geiger.** “ ugh at
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. * ITG/TEM turbulence dri ?\\{O «rd impurity convection via
thermo-diffusior ?O «snollow n,
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e For’ ,‘\e\P\ _rations at moderate Z_, the dependence of the duce

\ on the impurity density gradient is close to linear. f
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* We have found numerically that a highly charged heavy impurity, like
W44 at non-trace concentration provokes a substantial reduction of the nsford
turbulent ion heat flux.
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