

Turbulent transport of impurities in multispecies Wendelstein 7-X plasmas

https://arxiv.org/abs/2008.07662

José M. García-Regaña

Contributors: M. Barnes, I. Calvo, F. I. Parra, J. Alcusón, A. Zocco, González- Jerez, E. Sánchez, H. Thienpondt, J. L. Velasco, A. Mollén and the W7-X team.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation: neoclassical E_r and Γ_z in stellarators

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field E_r in stellarators is large and **negative** \rightarrow impurity accumulation.

 E_r typically drives the strongest contribution to the radial impurity flux Γ_z .

Motivation: neoclassical E_r and Γ_z in stellarators

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D**~-O(10²) \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

$$\frac{\Gamma_Z}{n_Z} = -D\frac{\mathrm{d}\ln n_Z}{\mathrm{d}r} + V$$

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

$$\frac{\Gamma_Z}{n_Z} = -D\frac{\mathrm{d}\ln n_Z}{\mathrm{d}r} + V$$

$$n_Z$$

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

- Understanding impurity transport is crucial for the development and success of stellarators at a reactor scale.
- At reactor relevant conditions of $T_i \sim T_e$, neoclassical radial electric field in stellarators is large and negative \rightarrow impurity accumulation.

- Electron root (Er>0) \Rightarrow the **peaking factor V/D~O(10²)** \Rightarrow hollow impurity density.
- Ion root (Er<0) \Rightarrow the **peaking factor V/D~-O(10²)** \Rightarrow peaked impurity density.

The size of D and τ_1 in experiments

- Experimental diffusion coefficient (D_Z) and confinement time (τ_I) in W7-X are orders of magnitude above neoclassical predictions.
- Absence of impurity accumulation in most OP1* scenarios [Klinger NF'19].

Strong indication of **turbulence-driven transport** but simulations are **anecdotal.**

- Operator splitting and implicit treatment of parallel streaming and acceleration terms ⇒ efficient treatment of kinetic electrons (larger timestep allowed) in multispecies simulations.
- Recently benchmarked against GENE [A. González-Jerez, in progress].

Linear properties of background instabilities

- Gradients are set such that representative **ITG**, **TEM** and **ETG** instabilities are isolated.
- W7-X (EIM) @ r/a=0.8.
- **Trace n**_z level content of impurities.

ITG TEM	$\begin{array}{c} 4.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 4.0\end{array}$	$\begin{array}{c} 1.0\\ 1.0\end{array}$
Species $Ar^{16+}, W^{16+}, W^{44+}$				

0.4-10ETG ETG TEM ITG ITG 0.3 3 5 ŝ $\omega a/v_r$ $\gamma a/v_r$ $\langle a/v_{\gamma}$ 0.2 $\mathbf{0}$ $\omega a /$ 0.1-5-1 $\frac{1}{20}$ - 10 0.0 $\frac{+0}{20}$ $^{2}0$ 15 10 1555 10 $k_u \rho_r$ $k_y \rho_r$

- **Broad** γ -spectrum of ITG mode with various changes of eigenmode structure.
- More unstable TEM than ITG mode. More unstable ETG than TEM.

D_{71} , D_{72} and C_7 for trace Ar¹⁶⁺, W¹⁶⁺, W⁴⁴⁺

- **ITG** turbulence drives outward diffusive transport **more efficiently than TEM**.
- **Thermo-diffusion** drives, for both turbulence types, **inward** impurity flux.
- **ITG** \Rightarrow **pinch** contribution , **TEM** \Rightarrow **anti-pinch** contribution [Alcusón in] progress '20].

 ITG-driven turbulent impurity flux has stronger localization along k_x and k_y than TEM-driven impurity flux.

- ITG-driven turbulent impurity flux has stronger localization along k_x and k_y than TEM-driven impurity flux.
- **TEM** case has noticeable contributions to the total flux at the highest $k_v \rho_i$ simulated.

- ITG-driven turbulent impurity flux has stronger localization along k_x and k_y than TEM-driven impurity flux.
- **TEM** case has noticeable contributions to the total flux at the highest $k_v \rho_i$ simulated.
- Energy cascade, in both ITG and TEM cases, follows a power low with exponent -7/3
 [Barnes PRL'11] ⇒ intrinsically 3D Turbulence

- ITG-driven turbulent impurity flux has stronger localization along k_x and k_y than TEM-driven impurity flux.
- **TEM** case has noticeable contributions to the total flux at the highest $k_v \rho_i$ simulated.
- Energy cascade, in both ITG and TEM cases, follows a power low with exponent -7/3
 [Barnes PRL'11] ⇒ intrinsically 3D Turbulence

D_{Z1} , D_{Z2} and C_Z for trace Ar¹⁶⁺, W¹⁶⁺, W⁴⁴⁺

- The experimental value of D_{Z1} is reasonably close to ITG and TEM simulations.
- **ITG turbulent** driven Γ_{z} produces **larger** D_{z1} **than TEM** turbulence.
- **Convection** (V) gets negative contribution from both D_{Z2} and C_{Z} in the ITG case, and opposite contributions from D_{Z2} and C_{Z} in TEM case.
- The large D_{Z1} supports a low value of the peaking factor (V/D) ⇒ nearly flat n_Z profiles, at worst!

$$\frac{V}{D} = -\frac{D_{Z2}\mathrm{d}\ln T_Z/\mathrm{d}r + C_Z}{D_{Z1}}.$$

What if impurities are non-trace?

- Trace concentration allows to **assume impurity transport coefficients independent on impurity parameters**, like gradients. Impurities do not *participate* in quasineutrality.
- How far from linear does, for instance, Z_{eff} =2 make $\Gamma_z(n_z)$? Not far.
- The flux deviates from linear trend in opposite directions for ITG than for TEM.

What if impurities are non-trace?

- Trace concentration allows to assume impurity transport coefficients independent on impurity parameters, like gradients. Impurities do not *participate* in quasineutrality.
- How far from linear does, for instance, Z_{eff} =2 make $\Gamma_z(n_z)$? Not far.
- The flux deviates from linear trend in opposite directions for ITG than for TEM.

 For the ITG case, including W⁴⁴⁺ at Z_{eff}=2 yields a reduction of the ion heat flux of approximately 30%.

- The mere presence of the impurity produces a modest fall of Q_i even if the profile is flat.
- **Q**_i decreases further with the strength of the impurity density gradient up to a constant value.
- In equilibrium: the turbulence will determine V/D, and this will, in turn set the reduction of Q_i.

 For the ITG case, including W⁴⁴⁺ and scanning Z_{eff} yield a reduction of the ion heat flux of up to approximately 40% for Z_{eff}=4.

- Q_i dependence on Z_{eff} is strong at low to moderate values of Z_{eff} a leads to a noticiable Q_i reduction.
- As in the n'_z scan, as Z_{eff} increases Q_i monotonically falls, although at a more moderate rate at higher values of Z_{eff}.

 For the ITG case, including W⁴⁴⁺ and scanning Z_{eff} yield a reduction of the ion heat flux of up to approximately 40% for Z_{eff}=4.

- Q_i dependence on Z_{eff} is strong at low to moderate values of Z_{eff} a leads to a noticiable Q_i reduction.
- As in the n'_z scan, as Z_{eff} increases Q_i monotonically falls, although at a more moderate rate at higher values of Z_{eff}.
- Does the deliberate injection of impurities, which may introduce transiently stronger density gradients and larger Z_{eff}, lead to a stronger Q_i reduction too? Experiments indicate so [Lunsford APS-DPP 2020]

<u>es</u>

а

⁻d

SUMMARY

- stella mixed implicit-explicit treatment of the GK eqs. has allowed us to address with several multispecies simulations the question about the turbulent transport of impurities in stellarators.
- **D**_{z1} carries the largest contribution to the total impurity flux.
- The values of D_{z1} numerically obtained are reasonably close to those reported in W7-X experiments [Geiger NF'19].
- **ITG/TEM** turbulence drives **inward/outward impurity convection** via $C_z \Rightarrow$ **peaked/hollow** n_z
- For impurity concentrations at moderate Z_{eff}, the dependence of the impurity flux on the impurity density gradient is close to linear.
- We have found numerically that a highly charged heavy impurity, like W⁴⁴⁺, at non-trace concentration provokes a substantial reduction of the turbulent ion heat flux.

 For the ITG case, including W⁴⁴⁺ and scanning Z_{eff} yield a reduction of the ion heat flux of up to approximately 40% for Z_{eff}=4.

