UKAEA

Preconditioners for large geometries

UK Atomic Energy Authority

November 27, 2020 Julita Inca Chiroque

Overview

Introduction

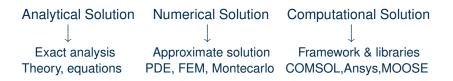
Concepts

Objective

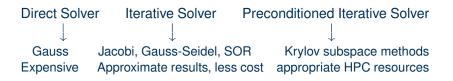
Methodology

Results

Bibliography


UK Atomic Energy Authority

Multi-physics Simulations


Modern science or engineering challenge

Create & control nuclear fusion reactions

Concepts

PDE problem -> Linear System Problem -> Matrix problem

MOOSE

llser-Focused Finite Flement Method Massively parallelisation

HPC libraries: PETSc * libMesh * Hypre

ITERI01

Objective

UK Atomic Energy Authority

Determine a *suitable preconditioner* that helps iterative matrix solutions of multiphysics problems.

There are many factors that affect the preconditioner performance:

- Type of the PDE
- Dimensions
- Solver type
- Boundary Conditions
- Nature of the matrix
- Material used
- Degrees of freedom (DoF)

Metrics

[01] Requirements for obtaining a good preconditioner (PC):

- The preconditioned matrix should have a clustered eigenspectrum away from 0,
 - $n_{iter} \leq rac{1}{2}\sqrt{\xi(G)}\lnrac{2}{\epsilon}+1$
- The PC should be as cheap to compute as possible,
- Its application to a vector should be cost-effective.

This work considers:

- Execution time (seconds)
- Memory usage (megabytes)
- Accuracy in the value of |R|
- Number of linear iterations

Methodology

Preconditioners (PCs): (Based on PETSc [02] -pc_type)

asm, bjacobi, cholesky, eisenstat, exotic, gamg, hypre, hypre_boomeramg, hypre_euclid, hypre_parasails, hypre_pilut, icc, ilu, jacobi, ksp, lu, mg, ml, none, pfmg, redundant, sor, telescope, tfs, pbjacobi, vpbjacobi, shell, lsc, redistribute, svd, kaczmarz, gasm, composite, nn, mat, fieldsplit, galerkin, cp, patch, syspfmg, bddc, lmvm

Physical Characteristics: (Based on MOOSE Modules [03]):

- Thermal2D (Heat Conduction)
- Displacement3D (Finite Strain Elastic Stress)
- Pressure 3D (Finite Strain Elastic Stress)
- Fluid 3D (Navier-Stokes)

Methodology

Execution mode:

- Serial
- Parallel
 - MPI (2p, 4p, 8p, 16p, 32p)
 - OpenMP (2t, 4t, 8t, 16t, 32t)
 - Hybrid (1t32p, 2t16p, 4p8t, 8t4p, 16t2p, 32t1p)
 - p -> processes, t -> threads

PROCEDURE:

1- Running ten times the following combination:

42 preconditioners * 4 physical characteristics * 17 execution modes.

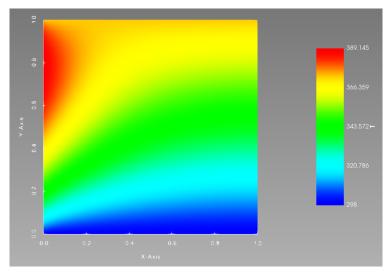
2- If converged:

Calculate the standard deviation of the execution time of each run. Plot execution time, memory, number of iterations, and |R|. Apply the Pareto efficiency in the data already plotted.

HPC Resources

Cumulus cluster at UKAEA

Hardware

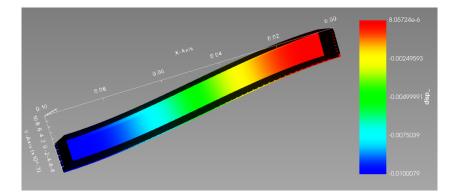

The cumulus nodes have 65 general worker nodes in cumulus, and 6 GPU nodes. Each node has 32 CPU cores of spec - Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz Each has 512GB of RAM, and are connected to each other via a FDR Infiniband network. The home file system is Lustre.

Software

Python 3.6.4 cmake 3.16.4 GCC 7.3.0 Openmpi 3.1.1

Heat Conduction 2D

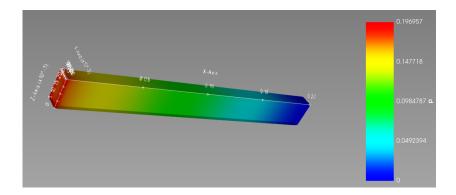
Steady state on steel 1cm x 1cm - Mesh 128 x 128



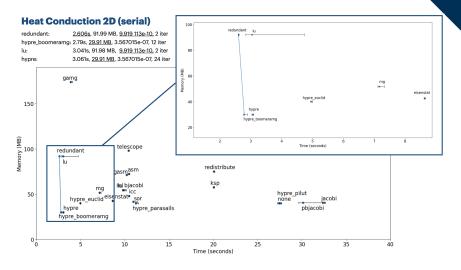
UK Atomic Energy Authority

Compute Finite Strain Elastic Stress

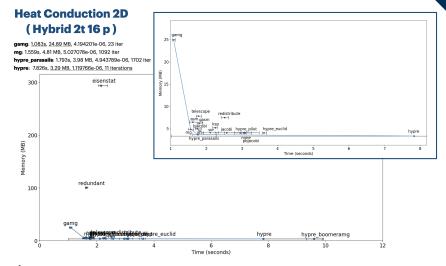
Displacement in 3D (x = 0.10cm, y = 0.01cm, z = 0.02cm)


UK Atomic Energy Authority

Navier-Stokes


UK Atomic Energy Authority

Fluid in 3D (x = 0.20cm, y = 0.01cm, z = 0.02cm)



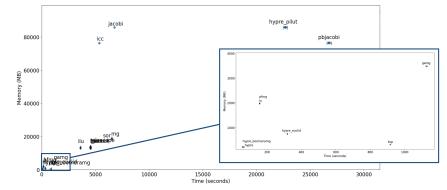
* gamg (3.893 s, 174.026 MB, 1.425356e-06, 23 iterations)

UK Atomic Energy Authority

MPI 16 proc: gamg (1.290s) | OpenMP 16 threads: hypre(1.384s)

Heat Conduction 2D

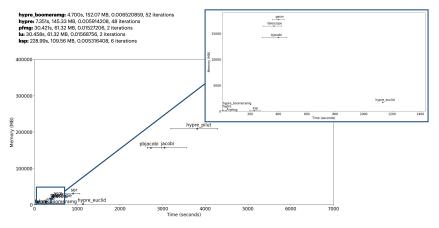
"Good preconditioners"


asm bjacobi eisenstat gamg hypre hypre_boomeramg hypre_euclid hypre_parasails hypre_pilut icc ilu jacobi ksp lu mg ml none redundant sor telescope pbjacobi redistribute gasm

"Bad Preconditioners"

cholesky exotic pfmg tfs vpbjacobi shell lsc svd kaczmarz composite nn mat fieldsplit galerkin cp patch syspfmg bddc lmvm

Compute Finite Strain Elastic - Displacement 3D (serial)

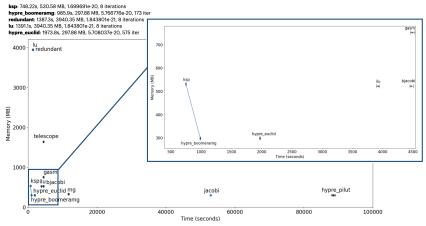

hypre. boomeramg: 57,652 seconds, 21274 MB, 0.004452565, 50 iterations hypre: 65.037 seconds, 216,06 MB, 0.005185383, 46 iterations lux: 156,239 seconds, 1977.42 MB, 0.01921162, 2 iterations kap: 822,979 seconds, 316,84 MB, 0.0059642132, 6 iterations gamp: 1126,2 seconds, 3482,23 MB, 0.009540427, 659 iterations

UK Atomic Energy Authority

MPI 32 processes: hypre_boomeramg (5.476s) OpenMP 32 threads: hypre_boomeramg(8.275s)

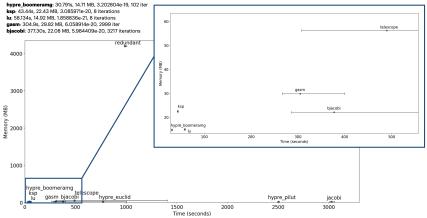
Compute Finite Strain Elastic - Displacement 3D (Hybrid - 8t4p)

Finite Strain Elastic Stress 3D


"Good preconditioners"

asm bjacobi cholesky gamg hypre hypre_boomeramg hypre_euclid hypre_pilut icc ilu jacobi ksp lu mg ml none pfmg sor telescope pbjacobi gasm mat cp

"Bad Preconditioners"


hypre_parasails redundant tfs vpbjacobi shell lsc redistribute svd kaczmarz composite nn fieldsplit galerkin

Navier-Stokes 3D (serial)

MPI 32 processes: hypre_boomeramg (30.792 seconds) OpenMP 32 threads: telescope(191.00 seconds)

Navier-Stokes (Hybrid - 1t32p)

UK Atomic Energy Authority

Navier -Stokes 3D

"Good preconditioners"

asm bjacobi cholesky hypre_boomeramg hypre_euclid hypre_pilut icc ilu jacobi ksp lu mg ml none redundant telescope redistribute gasm composite cp

"**Bad Preconditioners**" eisenstat exotic gamg hypre hypre_parasails pfmg sor tfs pbjacobi vpbjacobi shell lsc svd kaczmarz nn mat fieldsplit galerkin

Open questions and next steps

- Parallelisation behaviour (communication, synchronization)
- Scalability of each preconditioner
- Other HPC architectures
- Solver types
- Finer grids
- Internode
- Optimization flags
- MultiPDEs simulations

Acknowledgement

- Andrew Davis (Line Manager at UKAEA)
- Aleksander Dubas (Mentor Assigned at UKAEA)

UK Atomic Energy Authority

@yulwitter

Bibliography

[01] source: https://www.diariomovil.info/2020/08/07/iter-el-futuro-de-la-fusion-nuclear-comercial/
[02] Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century: History, Current Developments, and Future Perspectives, 2012
http://downloads.hindawi.com/archive/2012/127647.pdf
[03] KSP: Linear System Solvers y Preconditioners
https://docs.petsc.org/en/latest/manual/ksp/preconditioners
[04] Physics Modules on MOOSE
https://mooseframework.inl.gov/modules/index.html