Microinstability simulations for stellarators involving kinetic electrons and realistic profiles with the global PIC code EUTERPE

J. Riemann, R. Kleiber, M. Borchardt

Max-Planck-Institut f. Plasmaphysik (IPP)
Wendelsteinstr. 1, D-17491 Greifswald, Germany

2nd Fusion HPC Workshop (Dec 2-3, 2021)
1. Introduction
2. Global gyrokinetic code EUTERPE
3. Profiles & Equilibria in Global Simulations
4. Profiles and Gradient Scans in Global Simulations
5. Linear Simulation Results with Adiabatic Electrons
6. Comment on Fourier Filters in EUTERPE
7. Linear Simulation Results with Kinetic Electrons
8. Summary and Outlook
Global gyrokinetic code EUTERPE

- originally developed at CRPP Lausanne (G. Jost, 2000), since then at IPP
- close relative of GYGLES, ORB5, NEMORB
- gyrokinetic particle-in-cell (PIC) code utilizing δf-method for noise reduction
- fully global = full flux surface & full radius (annulus possible)
- linear/nonlinear regime possible
- electrostatic/electromagnetic version possible
- multiple species (e.g. ions, electrons, fast ions/impurities)
- pitch-angle collision operator
- phase-factor extraction for linear simulations
- coupling to models of different complexity (FLU-EUTERPE, CKA-EUTERPE, ...)
- different applications by several users
Profiles & Equilibria in Global Simulations

local simulations

- widely used since numerical effort comparably low
- offer themselves as an ideal tool for parameter studies
- parameters and gradients can be varied easily
- BUT: free variation of gradients can lead to inconsistent and unrealistic profiles
- THEREFORE: careful choice and documentation of assumptions required

global simulations

- desirable BUT offer multiple challenges
- numerical effort much larger
- local variation of parameters or gradients will always affect entire profiles
- parameter or gradient variations can result in unrealistic global profiles
- changing profiles may lead to inconsistency with equilibrium assumptions
Profiles & Equilibria in Global Simulations

• most global simulations so far are done with *artificial* profiles, i.e.
 • gradients limited to radial range avoiding difficult regions (core, edge)
 • local gradients can be inconsistent with actual profiles
 • profiles not consistent with underlying equilibrium pressure profile

• *realistic* profiles
 • may have extended gradients not avoiding difficult regions
 • can be experimental profiles
 • are interlinked and consistent with equilibrium pressure profile
Profiles and Gradient Scans in Global Simulations

- Gradient scans are routinely used for stability studies.
- Density and temperatures in a given equilibrium depend on each other.
- Variation of one profile may affect other profiles and/or the equilibrium.
- Gradient scans correspond to unique trajectories in configuration space.
- Vast variety of profile variation schemes (trajectories) possible.
- Different schemes may require different effort (economy?).
- Underlying assumptions need to be disclosed for correct interpretation.

Example for simple gradient variation scheme follows.
Example: Simple Pressure-Preserving Scheme

- quasi-neutral and single-charged plasma with $T_e = T_i = T$

$$p(s) = n_0 T_0 f(s)$$

- simple decomposition of pressure according to

$$n = n_0 f^\chi \quad \text{and} \quad T = T_0 f^{1-\chi}$$

- results in simple relations for drive κ and stability parameter η

$$\kappa_n = \left| \frac{n'}{n} \right| = \chi \left| \frac{f'}{f} \right| , \quad \kappa_T = \left| \frac{T'}{T} \right| = (1 - \chi) \left| \frac{f'}{f} \right| \quad \text{and} \quad \eta = \frac{\kappa_T}{\kappa_n} = \frac{1 - \chi}{\chi}$$

- enables gradient scan within a given equilibrium

- for more general case one may introduce *profile-separation function* $g(s)$

$$p = ng^{-\chi} (T_e + T_i) g^{\chi}$$
Pressure-Preserving Scheme (Ctd.)

- parameter χ allows consistent variation of gradients for given equilibrium
- variation of pressure profile leads to new equilibrium
- introduce *peaking parameter* λ to vary pressure: $\ p \rightarrow p^\lambda$
- additional assumption: renormalize pressure to keep $\langle \beta \rangle$ fixed
- 2D-scan over density and temperature gradients = scan over parameters χ and λ
Profiles in Pressure-Preserving Gradient Scan

- pressure-preserving gradient scan over χ for given equilibrium ($\lambda = 1.0$)

- pressure profile scan with λ over equilibria with fixed $\langle \beta \rangle$ ($\chi = 0.2$)
- gradient scans (χ) for three different W7-X equilibria (λ)
- linear ITG growth rates - in different representations
- damping effect of neoclassical electric field E_r

$E_r = 0$:

$E_r \sim p'$:
Comment on Fourier Filters in EUTERPE

- unique EUTERPE feature: real and complex version available
- complex version (linear problem only) offers possibility for *phase-factor extraction*

\[\mathbf{X}(\theta, \phi) = \tilde{\mathbf{X}}(\theta, \phi) e^{i(m_0\theta + n_0\phi)} , \quad \tilde{\mathbf{X}}(\theta, \phi) = \sum \tilde{X}_{mn} e^{i(m\theta + n\phi)} \]

- allows strong reduction of grid resolution when dealing with high mode numbers
- define Fourier filter with \([\Delta m, \Delta n]\) around phase-factor \([m_0, n_0]\)
- different filter types available (rectangular, diagonal, ...)
- some simulations found sensitive to type and shape of applied Fourier filter
- early simulations with kinetic electrons were obstructed by spurious modes
- problems could be resolved with tailored Fourier filters
Tailoring Fourier Filters

- \(\nu\)-corridor: \(m\)-\(n\)-domain bounded by lines with \(n = -\nu_{\text{max}}m \) and \(n = -\nu_{\text{min}}m \)
- spurious modes observed at \((m, n)\) outside of \(\nu\)-corridor
- problems were resolved with aligned filter restricted to \(\nu\)-corridor
- final mode localized around flux surface \(s_\ast \) with local \(\nu_\ast \)
- Fourier spectrum distributed around \(n = -\nu_\ast m \)

rectangular filter aligned filter simulation
Linear Simulations with Kinetic Electrons - Profiles

- density-temperature gradient (χ) scan for a fixed pressure profile ($T_e = T_i$)
- position of maximum gradients (T', n') is different and varies under scan
- position of maximum drive κ_n and κ_T is identical and fixed
- stability parameter varies but obeys $\eta = const(s)$

$$f = T :$$

$$f = n :$$
• comparison of kinetic vs. adiabatic electrons in ITG-regime ($\eta = 3$)
• phase-factor scan over $k_\perp \rho(m_0, n_0)$ with small Fourier filter size
• growth rates $\gamma(k_\perp \rho)$ have local maximum at $k_\perp \rho \approx 2$
• behaviour similar to other results (cf. Sánchez et. al 2021)
• adequate time steps used ($\Delta t_{\text{kin}} \leq \Delta t_{\text{ad}}/40$) \longrightarrow good agreement
• notice radial localization of mode (position of maximum density gradient)
○ gradient (χ) scan over $\eta = \kappa_T/\kappa_n = L_n/L_T$ for fixed pressure profile
○ phase-factor scan over $k_{\perp} \rho(m_0, n_0)$ with small Fourier filter at fixed η
○ maximum growth rates observed for $k_{\perp} \rho \approx 2$
○ electron-driven modes ($\eta \leq 1$) localized around maximum drive (κ) position
○ poloidal shift decreases with $k_{\perp} \rho$?
results for most dominant modes \((k_\parallel \rho \approx 2) \) at different \(\eta \)

- strong increase of growth rates for \(\eta \leq 1 \)
- electron-driven modes \((\eta \leq 1) \) localized around maximum drive (\(\kappa \)) position
- poloidal shift smaller for electron-driven modes?

\[
growth rate \\
\eta \times 10^3 \text{ TeV} \\
0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \\
1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\text{frequency} \\
f \times 10^3 \text{ Hz} \\
0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \\
-1 \quad 0 \quad 1 \quad 2 \quad 3 \\
\text{radial position} \\
r \times 10^3 \text{ cm} \\
0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \\
0.5 \quad 0.6 \quad 0.7 \quad 0.8 \\
\text{poloidal shift} \\
\theta \times 10^{-2} \text{ m} \\
0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \\
-0.03 \quad -0.03 \quad -0.03 \quad -0.03
energy transfer over phase space $v_\perp - v_\parallel$ for different η and $k_\perp \rho = 2.0$

characteristic 'kidney' shape for ions in ITG regime ($\eta = 3$)

fully developed trapping cone for electrons in TEM regime ($\eta = 0.33$)

trapping cone: $v_\parallel^2/v^2 \leq 1 - B_{\min}/B_{\max}$ (here shown for $s = 1$)

(energy transfer < 0: driving / energy transfer > 0: damping)
phase space diagrams for phase factor set to different $k_{\perp \rho}$ at $\eta = 1.0$

different (ITG-like, TEM-like) contributions mix into final mode

(energy transfer < 0: driving / energy transfer > 0: damping)
Summary and Outlook

- global linear simulations with kinetic electrons successfully done with EUTERPE
- different regimes were tested using profiles with consistent gradient variations
- only linear simulations of this type so far but nonlinear simulations in progress
- simulations with realistic parameters require high resolutions
- nonlinear simulations with kinetic electrons much more costly and sensitive
- some electromagnetic simulations for down-scaled cases successful (A. Mishchenko)
- will be used as starting point for further steps