## Multiscale Gyrokinetic Analysis in the Tokamak Pedestal

## By **E.A. Belli**<sup>1</sup>, J. Candy<sup>1</sup>, I. Sfiligoi<sup>2</sup>

## <sup>1</sup> General Atomics

<sup>2</sup> UCSD San Diego Supercomputing Center

Presented at the Fusion HPC Workshop

December 2022



Supported by U.S. DOE under DE-FG02-95ER54309 and DE-FC02-06ER54873



## Understanding transport in the H-mode pedestal can help to develop operating regimes for optimal confinement and fusion performance.

- The most promising operating scenario for achieving fusion in tokamaks is H-mode confinement regime.
- H-mode is characterized by the formation of edge transport
- Region of reduced transport leads to steeper gradients in density and temperature → "pedestal" structure at the edge of the plasma
- Pedestal plays a key role in determining global energy confinement.

Turbulent transport in pedestal is less well understood than in the core.



- Strongly shaped edge geometry
  - Need 2-6X increase in resolution in parallel (field-line) direction  $\theta$



q

- Strongly shaped edge geometry
  - Need 2-6X increase in resolution in parallel (field-line) direction  $\theta$
- Weaker pitch of confining magnetic field (large safety factor q)
  - Need large radial resolution



q

- Strongly shaped edge geometry
  - Need 2-6X increase in resolution in parallel (field-line) direction  $\theta$
- Weaker pitch of confining magnetic field (large safety factor q)
  - Need large radial resolution
- Large collisionality
  - Need advanced collision models



Standard e pitch angle scattering + energy diffusion

- + conservation (n,v,E)
- + inter-species (multiscale in velocity space)



- Strongly shaped edge geometry
  - Need 2-6X increase in resolution in parallel (field-line) direction  $\theta$
- Weaker pitch of confining magnetic field (large safety factor q)
  - Need large radial resolution
- Large collisionality
  - Need advanced collision models
- Large gradients drive multiple instab. across broad range of spatial scales
  - **lon-scales**  $(k_{\theta}\rho_i \leq 1)$ : ES modes (ITG, TEM), EM modes (MTM)
  - Electron-scales  $(k_{\theta}\rho_e \sim 1)$ : ETG



Electron heat transport will play a dominant role in reactors → Multiscale resolution needed

GENERAL ATOMICS



Requires leadershipscale computing resources and highly optimized solvers.



## CGYRO: A multiscale-optimized gyrokinetic turbulence solver

- Solves the 5D (3 spatial+2 velocity)  $\delta f$  gyrokinetic-Poisson-Ampere equations using **Eulerian approach**
- Motivations are accurate collisions in H-mode pedestal and and to provide efficient nonlinear, electromagnetic multiscale simulations.
  - Complex nonlinear cross-scaling coupling requires extremely fine mesh in real space
    - $\rightarrow$  Specialized numerical schemes are needed to

prevent severe bottlenecks related to:

- gyroaveraging
- Maxwell field solve
- ExB nonlinearity



CGYRO implements highly efficient spectral/pseudospectral numerical schemes optimized for multiscale simulations.

 $H_a(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}, \boldsymbol{\xi}, \mathbf{v})$ 

| X | Radial   | spectral    |  |
|---|----------|-------------|--|
| У | Binormal | spectral    |  |
| θ | Poloidal | Finite diff |  |

- Fully spectral in (x, α) provides maximal multiscale efficiency
  - Ensures collision operator is algebraic in space
  - Allows for most efficient evaluation of gyroaverages
  - Evaluation of nonlinear term on GPUs (cuFFT) ensures maximum performance and scalability

| ξ | Pitch angle | pseudospectral |
|---|-------------|----------------|
| V | Velocity    | psuedospectral |

 Pseudospectral in (ξ, v) provides optimal accuracy of collisions



## Unlike most gyrokinetic codes, CGYRO uses velocity-space coordinates optimized for the collisional problem.

## GYRO & GS2 use $(\lambda, \epsilon)$ coordinates

$$\lambda = \frac{\mathbf{V}_{\perp}^2}{\mathbf{V}^2 \mathbf{B}} \qquad \varepsilon = \frac{m_a \mathbf{V}^2}{2T_a}$$

### Advantage:

No need for derivatives across trapped/passing boundary since  $\theta$  discretization is aligned with particle orbits

### Disadvantage:

Difficult to evaluate collision operator due to irregular grid in  $(\xi, \theta)$   $\mathcal{L} = \frac{1}{2} \frac{\partial}{\partial \xi} (1 - \xi^2) \frac{\partial}{\partial \xi}$ **NEO has instead had great success with (\xi,v) coordinates**, implementing spectrallyaccurate collision operators.



## CGYRO has the first pseudospectral implementation of the collision operator in a gyrokinetic code.

- Legendre polynomials in  $\xi$
- $\mathcal{L} = \frac{1}{2} \frac{\partial}{\partial \xi} (1 \xi^2) \frac{\partial}{\partial \xi}$ Nonstandard orthogonal polynomials'in v
  - Accurate for energy integration and differentiation
  - Appropriate for semi-infinite energy domain

$$\int_0^b du \ e^{-u^2} Q_k(u) Q_l(u) = \gamma_k \delta_{kl}$$

 $u \in [0, b]$  $b \rightarrow 0$ : shifted monic Legendre b→∞: half-range Hermite

 $\boldsymbol{\xi} = \mathbf{v}_{\parallel}/\mathbf{v}$  $u_a = v/\sqrt{2v_{ta}}$ 





### Spectral convergence in $(\xi, v)$ velocity space is observed.





### The GKE exhibits highly-collisional behavior at the lowest energies, transitioning to collisionless behavior at high energies.



### CGYRO operator splitting for time integration

$$\frac{\partial h_a}{\partial \tau} + A(H_a, \Psi_a) + B(H_a, \Psi_a) = 0$$

- Nonlinear, Collisionless step:
  - Operates primarily in space (distributed in velocity dimensions)
    - Spectral in x and y; finite difference in  $\theta$
  - Nonlinearity via 2D FFT with dealiasing (well-suited to GPUs  $\rightarrow$  cuFFT)
  - Explicit in time: Adaptive embedded RK5(4)
    - Time step restriction set by fastest Alfven wave
    - Efficient for nonlinear multiscale (large number of radial & binormal wavenumbers)
    - Adaptive algorithm gives faster solution for systems with impulse and oscillatory behavior



## In the field line direction, a novel 5<sup>th</sup> order conservative algorithms is used to permit high-accuracy electromagnetic simulation.

Focus on schemes suitable for explicit advection



 $H_a = h_a - G_{0a} \tilde{\mathbf{v}}_{\parallel} \delta A_{\parallel} + G_{0a} \delta \phi$ 

Implement a 5<sup>th</sup> order upwind scheme:



 $S^{(6)} \sim (\Delta \theta)^5$ : Continuum limit obtained as num gridpts increases



## The conservative upwind scheme yields accurate discretization in the long-wavelength, high beta limit and for high-k ETG modes.



#### **Density conservation**

- **Dissipation** causes inaccuracy due to violation of number conservation
- Project out the gyrocenter density distribution caused by the dissipation
- Method conserves gyrocenter number with respect to the numerical dissipation

### CGYRO operator splitting for time integration

$$\frac{\partial h_a}{\partial \tau} + A(H_a, \Psi_a) + B(H_a, \Psi_a) = 0$$

- Collisional + trapping step:
  - Operates in velocity space (distributed in spatial dimensions)
  - Implicit in time: 2nd order CN
    - Required for stability due to scaling of  $v_e$  with inverse powers of v
    - Matrix is large and well-suited to execution on GPUs

$$\begin{bmatrix} H_1^+ \\ H_2^+ \\ \vdots \\ H_{Na}^+ \end{bmatrix} = \mathbb{M} \begin{bmatrix} H_1^- \\ H_2^- \\ \vdots \\ H_{Na}^- \end{bmatrix}$$

$$Rank(M)=N_{\xi}N_{v}N_{a}$$



### CGYRO uses a spatial discretization & array distribution scheme that targets scalability on next-generation HPC systems

- Operates on 5+1 dimensional grid
- Several steps in the simulation loop, where each step
  - Can cleanly partition the problem in at least one dimension
    - But no one dimension in common between all of them
  - All dimensions are compute-parallel
    - But some dimensions may rely on neighbor data from previous step

Easy to split among several CPU/GPU cores and nodes

Requires frequent transpose ops (i.e. MPI\_ALLtoALL) → Communication heavy



## CGYRO uses a spatial discretization & array distribution scheme that targets scalability on next-generation HPC systems

#### Communication happens on 2 orthogonal communicators

| Kernel        | Data dependence                                                                         | Dominant operation  | Communication |
|---------------|-----------------------------------------------------------------------------------------|---------------------|---------------|
| Collisionless | $k_x^0, \theta \ [k_y]_1, [\xi, v, a]_2$                                                | Loop (linear)       | MPI_ALLREDUCE |
| Nonlinear     | $k_x^0, k_y \ [\theta, [\xi, v, a]_2]_1$                                                | FFT                 | MPI_ALLTOALL  |
| Collisional   | $\boldsymbol{\xi}, \mathbf{v}, \boldsymbol{a}  [k_y]_1, [k_x^0, \boldsymbol{\theta}]_2$ | Matrix-vec multiply | MPI_ALLTOALL  |

- All CGYRO kernels are ported to GPUs using OpenACC and cuFFT
- Critical use of GPUDirect MPI minimizes cost of memory movement
  - Gives 30-40% reduction in comm timing on OLCF Summit
  - Optimal for Frontier



## CGYRO uses a spatial discretization & array distribution scheme that targets scalability on next-generation HPC systems

### For small to medium simulations:

- Comm1 is typically more "chatty"
- Keep most of data inside the node to reduce network traffic
- But increasing #MPI, increases data comm of Comm2

## • For multiscale:

- When #MPI is multiple of #species, can exchange only per-species data and comm2 data volume cut by #species
- Smarter, adapative time advance reduces both compute time and data volume



#### Network data on Perlmutter - nl03

Comm1 Comm2



## CGYRO strong scaling shows excellent performance on GPU systems on both a per node and maximum performance basis.





## On CPU systems, compute time is dominated by nonlinear FFT and cost of communication:compute ratio is smaller.





### On GPU systems, high performance cuFFT means short time spent in nonlinear kernel & code is communication-intensive.



Reflects high absolute performance of GPUs rather than poor performance of interconnect

Requires 600 GB of GPU memory



## CGYRO multiscale simulation is well-suited to capability simulation on accelerated systems like Summit/Frontier.



## CGYRO multiscale gyrokinetic turbulence analysis in the tokamak pedestal

### DIII-D ITER Baseline H-mode #164988, r/a=0.92



25

### CGYRO: 250K Summit node-hrs

The experiment lies in a **bifurcation region** between **ion-scale-dominated** and **multiscale-dominated** turbulence regimes.

$$\frac{1}{L_{Ti}} = -\frac{dlnT_i}{dr}$$



## Multiple drift modes are linearly unstable across a broad range of spatial scales from ion-scales to electron-scales.





## The electron-scale turbulence is reduced by ion-scale fluctuations through nonlinear mode-mode interaction & an increase in zonal flows.





 $x/\rho_s$ 

## On the ion-scale branch, the fluctuating electrostatic potential intensity is peaked around $k_x^0=0$ and the total amplitude is large.



High- $k_x$  nonzonal modes damped by ion FLR.

Zf potential is driven by low- $k_{\theta}$ modes and increases significantly with ion drive.

## Increase in the nonzonal fluctuating intensity is well correlated with increase in the ion energy flux.



## The drift energy associated with the fluctuating ExB velocity is enhanced for the multiscale branch.



30

$$\begin{split} K(k_{\theta}, k_{x}^{0}) &\doteq k_{\perp}^{2} \rho_{s}^{2} \left\langle \left| \delta \hat{\phi}(k_{\theta}, k_{x}^{0}) \right|^{2} \right\rangle_{t} \\ \vec{v}_{ExB}(\vec{k}_{\perp}) &= -i \frac{c}{B} \delta \hat{\phi}(\vec{k}_{\perp}) \vec{k}_{\perp} \times \vec{b} \end{split}$$



## In multiscale to ion-scale transition, the energy shifts from dominantly drift kinetic to potential intensity & is correlated with the energy flux.



31

$$E_{tot} = K_{tot} + I_{tot}$$

## Drift energy associated with ExB velocity:

$$\boldsymbol{K}(\boldsymbol{k}_{\theta}, \boldsymbol{k}_{x}^{0}) \doteq k_{\perp}^{2} \rho_{s}^{2} \left\langle \left| \delta \hat{\phi}(\boldsymbol{k}_{\theta}, \boldsymbol{k}_{x}^{0}) \right|^{2} \right\rangle_{t}$$

Fluctuating electrostatic potential intensity:

$$I(\boldsymbol{k}_{\theta}, \boldsymbol{k}_{x}^{0}) \doteq \left\langle \left| \delta \hat{\phi}(\boldsymbol{k}_{\theta}, \boldsymbol{k}_{x}^{0}) \right|^{2} \right\rangle_{\mathbf{k}}$$



### Summary

- A multiscale-optimized gyrokinetic turbulence solver (CGYRO) was developed.
  - Uses highly efficient **spectral/pseudospectral** numerical schemes in 4/5 dims
  - Pseudospectral in velocity space gives optimal accuracy of collisions
  - Fully spectral in  $k_{\perp}$  gives spectral gyroaverages  $\rightarrow$  efficiency for multiscale
  - Nonlinear evaluation on GPUs (cuFFT)  $\rightarrow$  maximum performance & scalability
  - Novel conservative upwind scheme in  $\theta$  permits high accuracy EM simulation
  - Spatial discretization and array distribution scheme targets scalability on nextgeneration, exascale HPC systems (GPU-accelerated)
- Optimizations enabled a **first multiscale analysis of pedestal-like transport** with full ion-electron cross-coupling.
  - Experiment lies in bifurcation region btw multiscale-dominated & ion-scaledominated turbulence regimes. In the transition, electron-scale transport is reduced by nonlinear mixing w/ ion-scale fluctuations & ion-scale-driven zfs.

#### First CGYRO Exascale simulations of multi-species burning plasmas on Frontier in 2023