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• The most promising operating scenario for achieving fusion in 
tokamaks is H-mode confinement regime.

• H-mode is characterized by the formation of edge transport
• Region of reduced transport leads to steeper gradients in density 

and temperature à “pedestal” structure at the edge of the plasma
• Pedestal plays a key role in

determining global energy
confinement.

Turbulent transport in pedestal
is less well understood than in 
the core.

Understanding transport in the H-mode pedestal can help to develop 
operating regimes for optimal confinement and fusion performance.
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While ion-scale turbulence in the core has been modeled extensively, 
multiscale pedestal simulations are far more challenging.

DIII-D H-mode ITER Baseline #164988• Strongly shaped edge geometry
– Need 2-6X increase in resolution 

in parallel (field-line) direction 𝜃
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• Strongly shaped edge geometry
– Need 2-6X increase in resolution 

in parallel (field-line) direction 𝜃
• Weaker pitch of confining magnetic 

field (large safety factor q)
– Need large radial resolution

While ion-scale turbulence in the core has been modeled extensively, 
multiscale pedestal simulations are far more challenging.
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• Strongly shaped edge geometry
– Need 2-6X increase in resolution 

in parallel (field-line) direction 𝜃
• Weaker pitch of confining magnetic 

field (large safety factor q)
– Need large radial resolution

• Large collisionality
– Need advanced collision models

While ion-scale turbulence in the core has been modeled extensively, 
multiscale pedestal simulations are far more challenging.
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• Strongly shaped edge geometry
– Need 2-6X increase in resolution 

in parallel (field-line) direction 𝜃
• Weaker pitch of confining magnetic 

field (large safety factor q)
– Need large radial resolution

• Large collisionality
– Need advanced collision models

• Large gradients drive multiple instab. 
across broad range of spatial scales
– Ion-scales 𝒌𝜽𝝆𝒊 ≲ 𝟏 : ES modes 

(ITG, TEM), EM modes (MTM)
– Electron-scales 𝒌𝜽𝝆𝒆~𝟏 : ETG

𝑘$𝜌%

Electron heat transport will play a 
dominant role in reactors
à Multiscale resolution needed

While ion-scale turbulence in the core has been modeled extensively, 
multiscale pedestal simulations are far more challenging.
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While ion-scale turbulence in the core has been modeled extensively, 
multiscale pedestal simulations are far more challenging.
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• Solves the 5D (3 spatial+2 velocity) 𝛿𝑓 gyrokinetic-Poisson-
Ampere equations using Eulerian approach

• Motivations are accurate collisions in H-mode pedestal and 
and to provide efficient nonlinear, electromagnetic 
multiscale simulations.
– Complex nonlinear cross-scaling coupling requires 

extremely fine mesh in real space 
à Specialized numerical schemes are needed to 

prevent severe bottlenecks related to:
– gyroaveraging
– Maxwell field solve
– ExB nonlinearity

CGYRO: A multiscale-optimized gyrokinetic turbulence solver
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• Fully spectral in 𝒙, 𝜶 provides 
maximal multiscale efficiency
– Ensures collision operator is 

algebraic in space
– Allows for most efficient 

evaluation of gyroaverages
– Evaluation of nonlinear term on 

GPUs (cuFFT) ensures maximum 
performance and scalability

CGYRO implements highly efficient spectral/pseudospectral
numerical schemes optimized for multiscale simulations.

x Radial spectral
y Binormal spectral
𝜃 Poloidal Finite diff

𝜉 Pitch angle pseudospectral
v Velocity psuedospectral

𝑯𝒂 𝒙, 𝒚, 𝜽, 𝝃, v

• Pseudospectral in 𝝃, v
provides optimal 
accuracy of collisions
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Unlike most gyrokinetic codes, CGYRO uses velocity-space 
coordinates optimized for the collisional problem.

GYRO & GS2 use (λ,ε) coordinates

𝜆 = v*+
v+! 𝜀 = ",v+

#$,
Advantage:
No need for derivatives across 
trapped/passing boundary since θ
discretization is aligned with particle orbits
Disadvantage:
Difficult to evaluate collision operator due to 
irregular grid in (𝜉,θ)
NEO has instead had great success with (ξ,v) 
coordinates, implementing spectrally-
accurate collision operators.

GYRO

NEO/CGYRO
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CGYRO has the first pseudospectral implementation of the 
collision operator in a gyrokinetic code.

• Legendre polynomials in 𝝃
• Nonstandard orthogonal polynomials in v

– Accurate for energy integration and 
differentiation

– Appropriate for semi-infinite energy 
domain

,
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bà0: shifted monic Legendre 
bà∞: half-range Hermite
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Spectral convergence in 𝝃, v velocity space is observed.
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The GKE exhibits highly-collisional behavior at the lowest 
energies, transitioning to collisionless behavior at high energies.

|He| at various energy meshpoints
ue=0.04481              ue=0.22722              ue=0.52603            ue=0.90922

ue=1.35004                ue=1.82579              ue=2.30486            ue=2.70338

𝜈̅& = 1.0
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• Nonlinear, Collisionless step:
– Operates primarily in space (distributed in velocity dimensions)

• Spectral in x and y; finite difference in 𝜃
– Nonlinearity via 2D FFT with dealiasing (well-suited to GPUs à cuFFT)
– Explicit in time: Adaptive embedded RK5(4)

• Time step restriction set by fastest Alfven wave
• Efficient for nonlinear multiscale (large number of radial & 

binormal wavenumbers)
• Adaptive algorithm gives faster solution for systems with impulse 

and oscillatory behavior

CGYRO operator splitting for time integration

𝜕ℎ.
𝜕𝜏

+ 𝑨 𝑯𝒂, 𝜳𝒂 + 𝑩 𝑯𝒂, 𝜳𝒂 = 0
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• Focus on schemes suitable for explicit advection

• Implement a 5th order upwind scheme:

In the field line direction, a novel 5th order conservative algorithms is 
used to permit high-accuracy electromagnetic simulation.

𝜕ℎ'
𝜕𝜏

+ 6v∥
𝜕𝐻'
𝜕𝜃 𝐻' = ℎ' − 𝐺)' ;v∥𝛿𝐴∥ + 𝐺)'𝛿𝜙

𝑔' = ℎ' − 𝐺)' ;v∥𝛿𝐴∥𝜕(ℎ')*
𝜕𝜏 + 6v∥𝑫(𝟔)(𝐻')*+ 6v∥ 𝑺(𝟔)(𝑔')*

6th-order finite difference
(7-pt derivative)

𝑺(𝟔)~ ∆𝜽 𝟓:Continuum limit obtained as num gridpts increases

6th-order filter
(7-pt smoother)
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• Dissipation causes inaccuracy 
due to violation of number 
conservation

• Project out the gyrocenter 
density distribution caused by 
the dissipation

• Method conserves gyrocenter 
number with respect to the 
numerical dissipation

The conservative upwind scheme yields accurate discretization 
in the long-wavelength, high beta limit and for high-k ETG modes.

𝜕(ℎ')*
𝜕𝜏 + 6v∥𝑫(𝟔)(𝐻')*+𝑺(𝟔) 6v∥ 𝒈𝒂 𝒋 − 𝒈𝒂 𝒋

Density conservation
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• Collisional + trapping step:
– Operates in velocity space  (distributed in spatial dimensions)
– Implicit in time: 2nd order CN

• Required for stability due to scaling of 𝜈& with inverse powers of v
• Matrix is large and well-suited to execution on GPUs

CGYRO operator splitting for time integration

𝜕ℎ.
𝜕𝜏

+ 𝑨 𝑯𝒂, 𝜳𝒂 + 𝑩 𝑯𝒂, 𝜳𝒂 = 0

𝐻01

𝐻21
⋮

𝐻3'1
= 𝕄

𝐻04
𝐻24
⋮

𝐻3'4
Rank(𝕄)=N𝜉NvNa
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• Operates on 5+1 dimensional grid
• Several steps in the simulation loop, where 

each step
– Can cleanly partition the problem in at 

least one dimension
• But no one dimension in common 

between all of them
– All dimensions are compute-parallel

• But some dimensions may rely on 
neighbor data from previous step

CGYRO uses a spatial discretization & array distribution scheme 
that targets scalability on next-generation HPC systems

Easy to split 
among several 
CPU/GPU cores 
and nodes

Requires frequent 
transpose ops (i.e. 
MPI_ALLtoALL)
à Communication 
heavy
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Kernel Data dependence Dominant operation Communication
Collisionless 𝒌𝒙𝟎, 𝜽 [𝒌𝒚]𝟏, [𝝃, v, 𝒂]𝟐 Loop (linear) MPI_ALLREDUCE

Nonlinear 𝒌𝒙𝟎, 𝒌𝒚 𝜽, 𝝃, v, 𝒂 𝟐 0 FFT MPI_ALLTOALL

Collisional 𝝃, v, 𝒂 [𝒌𝒚]𝟏, 𝒌𝒙𝟎, 𝜽 𝟐
Matrix-vec multiply MPI_ALLTOALL

• All CGYRO kernels are ported to GPUs using OpenACC and cuFFT
• Critical use of GPUDirect MPI minimizes cost of memory 

movement
• Gives 30-40% reduction in comm timing on OLCF Summit
• Optimal for Frontier

CGYRO uses a spatial discretization & array distribution scheme 
that targets scalability on next-generation HPC systems

Communication happens on 2 orthogonal communicators
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CGYRO 2D communication pattern

• Communication happens on 2 orthogonal communicators
• One fixed size, the other increases with #MPI
• Different amounts of data on the two communicators

• First communicator typically
much more “chatty”
• For small to medium simulations

• Keeping most of it inside the node
will reduce network traffic
• But if we increase #MPI, the 

other communicator data will increase

Jan 18, 2022 16

-30%

-27%

-12% +10%

• For small to medium simulations:
– Comm1 is typically more ”chatty”
– Keep most of data inside the node to 

reduce network traffic
– But increasing #MPI, increases data 

comm of Comm2
• For multiscale:

– When #MPI is multiple of #species, can 
exchange only per-species data and 
comm2 data volume cut by #species

– Smarter, adapative time advance 
reduces both compute time and data 
volume

CGYRO uses a spatial discretization & array distribution scheme 
that targets scalability on next-generation HPC systems
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CGYRO strong scaling shows excellent performance on GPU 
systems on both a per node and maximum performance basis.
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On CPU systems, compute time is dominated by nonlinear FFT 
and cost of communication:compute ratio is smaller.
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On GPU systems, high performance cuFFT means short time spent 
in nonlinear kernel & code is communication-intensive.

Reflects high absolute 
performance of GPUs 
rather than poor 
performance of 
interconnect 
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CGYRO multiscale simulation is well-suited to capability 
simulation on accelerated systems like Summit/Frontier.
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Multiscale branch

Ion-scale branch
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The electron-scale turbulence is reduced by ion-scale fluctuations 
through nonlinear mode-mode interaction & an increase in zonal flows.
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On the ion-scale branch, the fluctuating electrostatic potential 
intensity is peaked around 𝒌𝒙𝟎=0 and the total amplitude is large.
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Increase in the nonzonal fluctuating intensity is well correlated 
with increase in the ion energy flux.
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The drift energy associated with the fluctuating ExB
velocity is enhanced for the multiscale branch.
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In multiscale to ion-scale transition, the energy shifts from dominantly 
drift kinetic to potential intensity & is correlated with the energy flux.
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• A multiscale-optimized gyrokinetic turbulence solver (CGYRO) was developed.
– Uses highly efficient spectral/pseudospectral numerical schemes in 4/5 dims
– Pseudospectral in velocity space gives optimal accuracy of collisions
– Fully spectral in 𝑘4 gives spectral gyroaverages à efficiency for multiscale
– Nonlinear evaluation on GPUs (cuFFT) à maximum performance & scalability
– Novel conservative upwind scheme in 𝜃 permits high accuracy EM simulation
– Spatial discretization and array distribution scheme targets scalability on next-

generation, exascale HPC systems (GPU-accelerated)
• Optimizations enabled a first multiscale analysis of pedestal-like transport with full 

ion-electron cross-coupling.
– Experiment lies in bifurcation region btw multiscale-dominated  & ion-scale-

dominated turbulence regimes.  In the transition, electron-scale transport is 
reduced by nonlinear mixing w/ ion-scale fluctuations & ion-scale-driven zfs.

Summary

First CGYRO Exascale simulations of multi-species burning plasmas on Frontier in 2023


