

Materials simulations from first principles and Molecular Dynamics with application in the fusion R&D

Jesper Byggmästar, Mikko Koskenniemi, Guanying Wei, Kai Nordlund and <u>Flyura Djurabekova</u>

University of Helsinki

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Damage on materials from fusion plasmas

Physics of ion-surface interactions is able to help to develop durable materials for application in fusion reactors. The two main sources of damage on materials in this condition:

- Surface damage from hot nuclei hitting the inner walls (plasma-material interactions)
- Damage on materials everywhere from the ~ 14 MeV neutrons produced in the fusion reaction

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

EURO*fusion*

16.12.2022

Nature of neutron damage

EURO*fusion*

 \succ The neutron cross-section is low \rightarrow travel deep

> Yet they collide with some probability with nuclei and give it a high recoil energy (keV's to 100's of keV's)

Damage event by 10 keV Fe recoil in Fe

Radiation damage in nuclear reactors

EUROfusion

Via a complex set of evolutional processes, this nanoscale damage eventually leads to major macroscopic consequences: changes of mechanical properties of materials, swelling, embrittlement, ...

Test samples: many years in a fission reactor

[B.N. Singh, A.J.E. Foreman, H. Trinkaus, Journal of Nuclear Materials **249**, (1997) 103-115]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Flyura Djurabekova

16.12.2022

Multicale physics during the continued neutron irradiation

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Flyura Djurabekova

HELSINGIN YLIOPISTO

NGFORS UN

UNIVERSITY OF HELSINKI

Materials multiscale modelling framework

- > Sequential and concurrent multiscale modelling
- > In Europe EUROFUSION WPMAT IREMEV has great coordination

Damage by fusion neutrons

EUROfusion

A typical neutron recoil E in W

 in fission is about 10 keV
 in fusion is about 150 keV

 The higher energy can produce huge damage clusters immediately => qualitative difference between fission and fusion!

Why does the damage clustering matter?

EUROfusion

There is clear evidence from atomistic simulations that the long-term damage evolution is dominated not by point defects, but by large clusters

> This is (unfortunately) also where the simulation model reliability limit comes in:

✓ different interatomic potentials predict different fractions of damage in large clusters

[C. Björkas, K. Nordlund, and M. J. Caturla, Phys. Rev. B 85, 024105 (2012)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Flyura Djurabekova

Complexity of processes

EURO*fusion*

> All of the following are known to happen. However, many of these processes cannot be simulated predictively alone, and the concerted actions even more so

HELSINGIN YLIOPISTO SINGFORS UNIVERSITET **UNIVERSITY OF HELSINKI**

Department of Physics Prof. Flyura Djurabekova

a)

Indent load (× 10³uN)

50

100

Depth (nm)

10

EUROfusion

- > Body-centred cubic
 - ✓ Mo-Nb-Ta-V-W, W-Ta-Cr-V
- Promising irradiation resistance:
- No dislocation loops?Minor hardening

Need for interatomic potentials..!!

Fig. S6. Mechanical response of the HEA. Representative (**a**) load-displacement curves and (**b**) hardness vs displacement curves for the pristine, annealed samples to 1073 K (HT), 1.6 dpa and 8 dpa irradiated samples. Shift of loading curves to the left indicates slight hardening, which is confirmed from the hardness vs displacement curves. (**c**) Nano-hardness (using nanoDMA) values of the pristine, annealed (HT), 1.6 dpa and 8 dpa irradiated HEA samples.

100

Displacement (nm)

150

50

b)

(GPa)

1.6dpa HT

150

pristine

200

[El-Atwani et al., "Outstanding radiation resistance of tungsten-based HEA." Sci. Adv. 2019; 5]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Flyura Djurabekova C)

Hardn

Machine-learning potential

EUROfusion

Energies & forces of structures computed by density functional theory (DFT)

Descriptor

encodes local atomic

environment into "machine-

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science & analytical force computation Department of Physics Prof. Flyura Djurabekova

16.12.2022

External analytical potential and machine-learnt E_{DFT} can be added: $E_{ext.}$

$$E_{i} = E_{\text{ext.}}(\mathbf{r}) + \sum_{s}^{M_{2b}} \alpha_{s} K_{2b}(\mathbf{q}_{i}, \mathbf{q}_{s}) + \sum_{s}^{M_{3b}} \alpha_{s} K_{3b}(\mathbf{q}_{i}, \mathbf{q}_{s}) + \sum_{s}^{M_{mb}} \alpha_{s} K_{mb}(\mathbf{q}_{i}, \mathbf{q}_{s})$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Modelling radiation damage

EURO*fusion* > Collision cascade (10 keV in Fe):

- ✓ Local melting
- Extreme repulsion
- Extreme temperature and pressure gradients
- ✓ Simple and complex defect structures
 - \rightarrow lattice strain fields and swelling

<- high-dose defect structure in Fe

GAP for radiation damage - training structures

EURO*fusion*

- Diverse training database needed!!
 - ✓ Wide range of strain/volumes
 - ✓ Wide range of temperatures
 - ✓ Liquids
 - ✓ Single defects and defect clusters
 - [Surfaces (including damaged surfaces)]

HELSINGIN YLIOPISTO **IGFORS UN UNIVERSITY OF HELSINKI**

EUROfusion

Basic properties for pure W, Mo, Nb, Ta, V in GAP

EUROfusion

> Threshold displacement energy surface of W:

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Flyura Djurabekova

16.12.2022

GAP for Mo-Nb-Ta-V-W alloys!?

EURO*fusion* Challenges:

➢ Huge composition space → huge training data sets!?

- ➤ Many-body descriptor vector length scales poorly with number of elements → huge training data sets!?
 - ✓ ~ N^2 for SOAP, ~ N for "compressed-SOAP" [J. Darby et al. (2022)]
- > Which descriptors to use??
- Possible solution:
 - ✓ rely on simple and data-efficient *low-dimensional descriptors*!
 - 2-body, 3-body, EAM density

Learning curves for Mo-Nb-Ta-V-W potentials

Number of alloy training structures 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 600 200 400 test error (meV/atom) 104 10^{1} ergy 2 meV/atomCrystals Liquids 10^{0} -**-**- 2b → 2b+3b+EAM → 2b+SOAP -+- 2b+EAM → 2b+cSOAP $-\phi$ - 2b+NEAM Simple "low-dimensional GAP" Force test error (eV/Å) 2b+3b+EAM outperforms standard high-dimensional many-Crystals Liquids 10^{-1} 100 20 40 60 80 100 20 40 60 80 0 0 % of full training database

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET **UNIVERSITY OF HELSINKI**

body GAPs!

EURO*fusion*

Faculty of Science **Department of Physics** Prof. Flyura Djurabekova

16.12.2022

tabGAP: tabulated low-dimensional GAPs

C EUROfusion

 \succ Tabulate GAP predictions \rightarrow cubic spline interpolations

> Any combination of low-dimensional descriptors:

✓ Two-body (pairs)

✓ Three-body (triplets)

✓ Many-body: EAM-like density $\rho_i = \sum_j \varphi(r_{ij})$

GAP:

$$E = \sum_{ij}^{N} E_{\text{ext.}}(r_{ij}) + \sum_{ij}^{N} \sum_{s}^{M_{2b}} \alpha_{s} K_{2b}(\boldsymbol{q}_{i}, \boldsymbol{q}_{s}) + \sum_{ijk}^{N} \sum_{s}^{M_{3b}} \alpha_{s} K_{3b}(\boldsymbol{q}_{i}, \boldsymbol{q}_{s}) + \sum_{i}^{N} \sum_{s}^{M_{EAM}} \alpha_{s} K_{EAM}(\boldsymbol{q}_{i}, \boldsymbol{q}_{s})$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Flyura Djurabekova

16.12.2022

Computational efficiency

EUROfusion

Accuracy versus computational cost:

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Flyura Djurabekova

16.12.2022

tabGAP for Mo-Nb-Ta-V-W alloys

EUROfusion

- Comparison of DFT and tabGAP predictions for energy per atom as a function of atomic volume,
 - ✓ a) for all equiatomic compositions for pure, binary, ternary, quaternary and HEA alloys, while in c) the alloy compositions sampled randomly
 - b) and d) bulk moduli and mixing energies deduced from the curves in a) and c), respectively.

[J. Byggmästar, K. Nordlund, and F. Djurabekova PRB 104, 104101 (2021)]

16.12.2022

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Flyura Djurabekova

EUROfusion

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Strong effects of local chemical neighborhood:
 - ✓ Wide distribution of migration energies!
 - ✓ SIAs not always <111> like in pure metals!
 - ✓ SIAs do not migrate in 1D along <111> with the minimal migration energy!
 - ✓ Avg. 1 eV+ in MoNbTaVW

Faculty of Science Department of Physics Prof. Flyura Djurabekova

Self-interstitial atoms:

16.12.2022

Short-range ordering in single-crystal MoNbTaVW

- > SRO (short-range order) in MoNbTaVW.
 - ✓ SRO parameter as a function of temperature Monte-Carlo +MD simulations for nearest (1nn) and the second nearest (2nn) neighbors.
- Strong energetic preference for (mainly) binary orderings --> explained by binary mixing curves (c)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI [J. Byggmästar, K. Nordlund, and F. Djurabekova PRB 104, 104101 (2021)] Faculty of Science

Department of Physics Prof. Flyura Djurabekova

16.12.2022

Segregation around voids: We see that large atoms such as Nb tend to segregate at open surface of voids. Results show two sizes of voids with 15 vacancies (Ø = 0.8 nm, up) and 65 vacancies (Ø = 1.3 nm, down)

Segregation near interstitial loops: Smaller atoms, V, have tendency to segregate in these regions
[J. Byggmästar, K. Nordlund, and F. Djurabekova PRB 104, 104101 (2021)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

[J. Byggmästar, K. Nordlund, and F. Djurabekova PRB 104, 104101 (2021)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Defect evolution during annealing: (a) different defect concentrations as well as the number of interstitials in clusters; (b) snapshots of the final defects in W and MoNbTaVW HEA
- > Experiments [1] see no dislocation loops in irradiated bcc HEAs:

They are too small.

- > Defects recombine rather than they cluster:
 - Comparable mobility in 3D for both interstitials and vacancies
 - dislocation loop immobility

[1] El-Atwani, Osman, et al. "Outstanding radiation resistance of tungsten-based highentropy alloys." *Science advances* 5.3 (2019):

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI entropy alloys." *Science advances* 5.3 (2019): Faculty of Science Department of Physics Prof. Flyura Djurabekova

16.12.2022

EUROfusion

- "Simple ML potentials for complex alloys"
- tabGAP: tabulated low-dimensional GAP
 - ✓ meV/atom accuracy for Mo-Nb-Ta-V-W alloys
 - ✓ 2 orders of magnitude faster than SOAP-GAP speed similar to Tersoff/MEAM
- > Strong effects of ordering and segregation in MoNbTaVW!
 - ✓ Atom size difference and favorable binary mixing
- Effect of lattice difference in pure-element materials affects the radiation resistance more than the difference in atomic size

Thank you for your attention!

EUROfusion

- GAP potential files & training data: https://gitlab.com/acclab/gap-data
- >tabGAP: https://gitlab.com/jezper/tabgap
- > References/further details:
 - J. Byggmästar, K. Nordlund, and F. Djurabekova, Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: defects and segregation, PRB 104, 104101 (2021)
 - ✓ J. Byggmästar, K. Nordlund, F. Djurabekova, Simple machine-learned interatomic potentials for complex alloys, https://arxiv.org/abs/2203.08458 (2022)