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The axisymmetric equilibrium control problem

Controller 
(10kHz)

19 voltage commands

~100 magnetic sensor 
measurements
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• Need to control: 
• Total plasma current Ip 

(maintained by induced voltage caused by 
transformer effect) 

• Radial position R (by vertical magnetic 
fields) 

• Vertical position Z (by radial magnetic 
fields - unstable for elongated plasmas) 

• Plasma shape: last closed flux surface 
distribution

The axisymmetric equilibrium control problem
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• Pre-shot 
• Pre-compute feedforward coil currents & voltages  
• Design feedback controllers for stabilization & tracking 

• During shot: 
• Real-time position estimators 
• Real-time equilibrium reconstruction 
• Separate real-time controllers per ‘channel’ 

• Today mostly done using traditional  
control engineering 
• ‘Model-based design’ + sometimes hand tuning 

of gains

Traditional solutions

See e.g. De Tommasi, G. Plasma Magnetic Control in Tokamak Devices. J Fusion Energ 38, 406–436 (2019)
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• Use Reinforcement Learning

A single controller?

measurements

actions

(From operator’s equilibrium  
evolution specifications)

• No separate calculation of 
controlled variables / 
equilibrium reconstruction 

• No separate design of 
various control loops
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• How do we (humans) learn to solve 
problems? 
• Trial and error interaction with the environment 

• Reinforcement learning (RL) is a general 
framework to express how this process 
is performed. 

• There are two important aspects to the 
paradigm 
• It allows us to specify the goal  

(Reward function) 
• It can deal with long-term dependencies 

(dynamical systems)

Reinforcement learning

https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go

https://openai.com/blog/solving-rubiks-cube/

StarCraft II

https://www.deepmind.com/blog/alphastar-
mastering-the-real-time-strategy-game-starcraft-ii
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• Supervised learning: Learn to classify data based on labeled examples 
• Unsupervised learning: Learn to separate data based on similarities or differences 
• Reinforcement learning: Learn by trial-and-error how to act on an environment to achieve 

high reward 
• Exploration to gather experience + learning from the experience  

Reinforcement learning versus other learning

[Figure and RL slide  
material from hereon:  

courtesy A. Abdolmaleki]

See also: [Sutton and Barto, Reinforcement Learning, an Introduction. MIT Press]
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[Credits A. Abdolmaleki, DeepMind]
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targets

measurements

reward

13

• Free-boundary simulator: Grad-Shafranov equation coupled to circuit equations 
• In: Voltages on coils. Out: Conductor currents, plasma current distribution, synthetic measurements 
• Used FGE code - part of SPC’s Matlab EQuilibrium suite (MEQ) [F. Carpanese, EPFL thesis 2020] 
• Typically ~hours for simulating a few seconds of plasma evolution (50,000 steps/s) - optimisation underway 

• Prescribe physical parameters not predicted by model: 
• Plasma conductivity σplasma 
• Plasma normalised pressure βp 

• Plasma current profile shape (qAxis) 

• Termination criteria, examples: 
• Exceeds limits on currents 
• Plasma too far away from target 
• Simulator solver did not converge 

• Reward function - specify what we want

Environment for learning tokamak axisymmetric control
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Reward formulation - components
Reward	component Description
Diverted Whether	the	plasma	is	limited	by	the	wall	or	diverted	through	an	X-point.
E/F	Currents The	currents	in	the	E	and	F	coils,	in	amperes.		
Elongation The	elongation	of	the	plasma,	this	is	its	height	divided	by	its	width.
LCFS	Distance The	distance	in	meters	from	the	target	points	to	the	nearest	point	on	the	last	closed	flux	surface	(LCFS).	
LCFS	Normalized	Flux The	difference	in	the	normalized	flux	at	target	points.	
Legs	Normalized	Flux The	difference	in	normalized	flux	from	the	flux	at	the	LCFS	at	target	leg	points.
Limit	Point The	distance	in	meters	from	the	actual	limit	point	(wall	or	X-point)	and	target	limit	point.
OH	Current	Diff The	difference	in	amperes	between	the	two	OH	coils.
Plasma	Current The	plasma	current	in	amperes.	
R,	Z The	radial/vertical	position	of	the	plasma	axis,	in	meters.
Radius Half	with	of	the	plasma,	in	meters
Triangularity The	upper	triangularity	is	defined	as	the	radial	position	of	the	highest	point	relative	to	the	median	radial	position.
Voltage	Out	of	Bounds Penalty	for	going	outside	of	the	voltage	limits.
X-point	Count Return	the	number	of	actual	and	requested	X-points	within	the	vessel.
X-point	Distance Returns	the	distance	in	meters	from	actual	X-points	to	target	X-points.	Only	X-points	within	20cm	are	considered.
X-point	Far For	any	X-point	that	isn't	requested,	return	the	distance	in	meters	from	the	X-point	to	the	LCFS.
X-point	Flux	Gradient The	gradient	of	the	flux	at	the	target	location	with	a	target	of	0	gradient.
X-point	Normalized	Flux The	difference	in	normalized	flux	from	the	flux	at	the	LCFS	at	target	X-points
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• Algorithm details: 
• Actor-Critic RL: good for control of environments with continuous-valued states 
• Distributed implementation: many actors in parallel, results fed to replay buffer 

continuously for learning

The learning setup
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• All learning ran on Google datacenters 
• Computation graph defined using launchpad 
• Learner (Critic) ran on TPU - optimized for linear algebra involved in 

training/evaluating deep neural networks 
• Simulations (Actors) ran on CPUs - easier since single-thread application

More learning details

https://www.deepmind.com/open-source/launchpad
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• Critic learns the Q function from data generated by actors 
interacting with environment 

• Actor learns a policy π by taking policy gradients on learned 
Q function 

• Advantages (in general) 
• Stability in training, flexibility, efficient use of data 

• Advantages (for our problem): 
• Value function: can be large & have access to privileged information (e.g. full state) 
• Actor (Policy) can be small for real-time applications 

• Deep Reinforcement Learning means using (Deep) Neural 
Networks for both the Value function and Policy

Actor-critic method for reinforcement learning
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• Actor-critic RL allows asymmetry 
• Large, recurrent critic 
− Only used in training 
− Sees entire simulator state 

• Small, feedforward actor 
− Runs in real-time 
− Sees only measurements

Importance of an asymmetric, recurrent critic

• Training successful only with 
recurrent critic
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• Deploy agent to TCV control system 
− Compiled Agent NN to binary - wrapped in Simulink S-function 
− TCV control system code does signal routing & calibration & traditional controller 
− Use automated code generation to deploy to real-time environment  
− One CPU thread, 10kHz 
− MARTe2 real-time framework [https://vcis.f4e.europa.eu/marte2-docs] 

• Needed to add randomization in training to make the controller 
robust (address ‘sim2real gap’) 
• Perturb plasma internal parameters (qA, βp, σplasma) that are external inputs to 

the GS equation 
• Perturb observations (measurements) and actions (input voltages). 

• Needed some trial-and error to design the reward function 
• Finally we found 1 reward function that worked for most cases

Bringing learned agents to the TCV tokamak hardware
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Result - demonstration shot
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Result - demonstration shot
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Various plasma shapes controlled in in TCV with reinforcement 
Learning
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Opening new frontiers for TCV: droplet plasmas
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Features of traditional / RL controllers

Traditional	controllers	(MIMO	PID) Our	Reinforcement	Learning	implementation

Separate	error	for	each	control	loop,	need	to	compute	error	
online

Single	reward	function,	no	explicit	error	signals	or	state	
estimation

Need	separate	tuning	of	various	control	loops,	using	linear	
control	techniques	assuming	(local)	linearity

Joint	solution	to	entire	stabilization/control	problem	
including	any	nonlinearities

Need	domain	knowledge	to	break	down	control	problems,	
design	separate	controllers

Domain	knowledge	is	in	simulator.	Just	define	reward	
functions

Tuning	of	several	control	parameters Reward	function	engineering

(Usually)	Clear	relation	between	parameters	and	aspects	of	
control	performance Black-box	agent
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• Demonstrated RL for closed-loop magnetic control of tokamak plasmas,  
trained in free-boundary simulations and tested on TCV experiments 
• Implementing 10kHz controller with 100+ measurements, 20 actions is a milestone for RL on real-world 

systems in terms of complexity 

• Key challenges: 
• Accurate and fast models of system to control 
• Reinforcement learning with scarce data 
• Reward function engineering 
• Real-time implementation & interfacing with existing PCS 
• Domain randomization for controller robustness

Conclusions

J. Degrave, F. Felici et al., Nature 602, 414–419 (2022)
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• Improve on current RL controller implementations for 
tokamak magnetic control 
• Recurrent policies / Tunable performance / Use experimental data 

• Use RL for optimizing plasma performance (= fusion power) 
• Need to include physics of internal plasma (temperature, density) evolution 

in environment, much more complex physics models. 
• ‘Whole device simulations’ - digital twins / flight simulators 

• Learn better operating scenarios, or co-design device and plasma scenario 

• Bright future for more applications of reinforcement learning 
• For accelerating fusion science: improving plasma performance, control & 

design new devices 
• For application to more complex real-world systems, in particular where 

good models exist

Outlook

Core/edge/equilibrium
Fusion 

full device simulators

ML accelerated
ML for data assimilation 

Feedforward / Feedback 
Controllers

Optimized design



F. Felici - 3rd Fusion HPC workshop, 15th-16th December 2022 27

• ML accelerated ‘surrogates’ of integrated simulation bottlenecks 
• Model of neutral beam heating sources (NUBEAMNET, [M.D. Boyer 2019]) 
• Models of turbulent transport fluxes (QLK-NN, [I. Van de Plassche 2020]) 
• Models of edge plasma pressure gradients (EPED-NN [O. Meneghini et al, 2021]) 

• Learning macroscopic tokamak behaviour from large datasets: apply for state 
reconstruction and control 
• RL for feedforward control of internal plasma quantities [J. Seo et al 2021]  
• Learning plasma internal profile evolution [J. Abbate, 2020] 

• (Real-time) plasma event detection based on diagnostic signals - for plasma state 
interpretation and machine protection 
• Confinement state detection: [F. Matos 2020] 
• Alfvén Eigenmode classification: [A. Jalalvand 2021]

Some other recent ML applications in Nuclear Fusion
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Backup slides
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• Find plasma equilibrium that best fits magnetic 
measurements 

• Formulate least-squares problem: min || y - A(x)*x ||2 
• Fit quantities x: 
− Parameters of internal plasma profiles (p’,FF’) 
− Unknown passive & active currents 

• Measurements y: 
− Magnetic and other measurements 

• A(x) regression matrix: contains a plasma-dependent part 
• Bottlenecks: 
• Solving GS equation in real-time 
• Build plasma-dependent part of regression matrix 

• Modern RT GS solvers can do this routinely in <1ms, e.g. 
• LIUQE [J-M. Moret, Fus. Eng. Des 2015] 
• PEFIT [Y. Huang et al, Fusion Eng. Des 2016]

Real-time equilibrium reconstruction



F. Felici - 3rd Fusion HPC workshop, 15th-16th December 2022 30

• Free-boundary Grad-Shafranov equilibrium evolution solvers  
• Grad-Shafranov equation 
− Static, ideal MHD axisymmetric force balance + Ampère’s law + Faraday’s law + 

internal plasma parameters 
• (linear) dynamic circuit equations for solid conductors 
− Current evolution in passive + active conductors due to induced and imposed 

voltages 
− Current evolution in plasma: 0D lumped equation or 1D current diffusion 

• Power supply models (often simplified) 
• (Magnetic) sensor models

Physics model for axisymmetric magnetic control
Example of TCV feedback  

controlled simulation using FGE
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• Value-based methods 
• Learn the Q function by interacting with the environment with a given 

policy π + randomization (to explore) 
• Compute the optimal policy π for the new value function. 
• Iterate until we find the optimal value function and optimal policy (Q*, π*) 

• Policy-based methods 
• Parametrize the policy and learn that directly: 
• Interact with the environment while perturbing the policy. 
• Computing a policy gradient from the sampled trajectories

Flavours of RL (1)
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• Model: 
• Flux solved on a square computational grid covering region within the 

limiter 
• Effect of external conductors on currents in grid is modelled via Green’s 

functions 
• Conductors modelled by a set of discrete filaments 
• No ferromagnetic elements, no SOL currents 

• Numerics: 
• Finite Differences for Laplace-like operator 
• ‘Lackner’s trick’ for effect of plasma currents on flux boundary conditions. 

• Common modules 
• Generic mag. axis, x-point, LCFS finder 
• Fast post-processing for integral quantities, contouring,  contour integral 

calculations (q profiles etc), gaps 
• Interpolation of fluxes, fields on desired control points

MEQ core model & numerics
MEQ geometry representation for TCV
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Example of TCV feedback  
controlled simulation

• Solves coupled equations: 
• ODEs (Kirchhoff circuit laws) for active and passive circuits including induced 

voltages from changing plasma distribution. 
• Plasma force balance (Grad Shafranov equation). 
• Constraint equations for p’, TT’ 
• Presently combinations of scalar constraints like Ip, βp/t, li, qA 

• Optionally: plasma Current Diffusion Equation:  
• Ohm’s law for the plasma: (presently 0D only) 

• Modules: 
• Feedback controller acting on coil voltages (test shape, current, position 

control) 
• Simple power supply models 
• Monitoring of coil current and force limits 

• Numerical solver:  
• Monolithic, Jacobian Free Newton Krylov solver 
• Numerical sensitivities for control design/optimisation use 

• Benchmarked vs FEEQS.M 

FGE - Forward Grad-Shafranov Evolution solver
Ref: [F. Carpanese EPFL PhD thesis 2020]


