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Motivation

We are developing a whole device model to simulate gyrokinetic equations with the first walls of
fusion device as simulation boundaries.

The plasma fluctuation becomes strong as approaching edge-SOL(scrape-off layer)
(δn/n0 ∼ O(1)).
▶ The conventional δf scheme is not applicable.
▶ The full-f simulation and nonlinear collision operator are required.

The magnetic field structure is complicated due to the separatrix and wall geometry.
▶ A structured grid or ψ-θ grid is not appropriate.
▶ An unstructured grid should be employed.

The gradient of f is steep in space and velocity.
▶ ρi/Ln can be ∼ O(1) in H-mode pedestal and SOL region.
▶ The open filed line in the SOL region.
▶ The ion orbit loss hole, fast electron escape through the sheath potential barrier.
▶ The discontinuous Galerkin (DG) approach can be a good candidate.

N.R. Mandell, A. Hakim, G.W. Hammett, M. Francisquez, J. Plasma Phys. 86 (1) (2020) 905860109.
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Discontinuous Galerkin method
The DG method is a finite element (FE) method that uses a piecewise discontinuous basis.
▶ A DG solution can be discontinuous at the interfaces of elements.
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The DG method can be viewed as a combination of FE and finite volume (FV) methods.
▶ The numerical flux is allowed. → The DG is more flexible and stable than the classic FE.
▶ The DG has a higher order accuracy than the FV.
▶ Information exchange is required only between the neighboring elements. → The DG is suitable for

massive parallelization.
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Computational Domain
A toroidally axisymmetric domain is considered.
No geometric constraint on the velocity space.
→ The rectangular elements are a good choice.
Triangular elements are used to represent the complicated the wall structure.
The finite element is constructed by the Cartesian product of the triangle
and rectangle.

Th := {K = Kx ×Kv : Kx ∈ T x
h ,Kv ∈ T v

h } .

∂K = ∂(Kx ×Kv) = (∂Kx ×Kv)
⋃

(Kx × ∂Kv) where Kx and Kv are
closed.

Gahyung Jo, Jae-Min Kwon, Janghoon Seo, Eisung Yoon, Comput. Phys. Commun. 273 (2022) 108265
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Affine transform
The reference element technique improves the structure, efficiency, and re-usability of the finite
element code.
The basis functions are once constructed on the reference element and mapped to each physical
element using the affine transforms.

The basis function and local integration on a physical element can be evaluated on the reference
element.

T : K̂ → K, ζ := ζ̂ ◦ T −1,

ˆ
K

f(z)dz = |JT |
ˆ

K̂

(f ◦ T )(ẑ)dẑ.
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Finite element spaces
Two types of basis are employed to represent the numerical solution for the gyrokinetic equation.
▶ Piecewise polynomial basis (Bubnov–Galerkin):

Vh := {ξ = ξxξv : ξx ∈ Pm(Kx), ξv ∈ Pm(Kv),Kx ×Kv ∈ Th} ,

Linear basis (m = 1)

Vh = {1, R, z} × {1, v∥, u} ⊃ P1(K) = {1, R, z, v∥, u}.

Quadratic basis (m = 2)

Vh = {1, R, z, R2, Rz, z2} × {1, v∥, u, v2
∥, v∥u, u2} ⊃ P2(K).

▶ Weighted polynomial basis (Petrov-Galerkin):

V ′
h := {ξfw : ξ ∈ Vh} ,

where fw can be chosen as either the local or canonical Maxwellian functions.
(E.L. Shi, G.W. Hammett, T. Stoltzfus-Dueck, A. Hakim, J. Plasma Phys. 83 (2017) 905830304.)

The test function space is generated by the piecewise polynomial basis.
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DG formulation of gyrokinetic equation

The gyrokinetic equation in the conservative form is considered

∂B∗
∥f

∂t
+
∂B∗

∥Ẋf
∂X +

∂B∗
∥ v̇∥f

∂v∥
= 0,

where f = f(z; t), z = (X, v∥, u), u =
√

2µBc/mi, µ, Bc, and mi are the magnetic moment, the
equilibrium magnetic field at the magnetic axis, and the ion mass, respectively.

The characteristic equations are given as follows:

Ẋ = v∥
B∗

B∗
∥

+ b̂

B∗
∥

× c

qs
µ∇B,

v̇∥ = − B∗

msB∗
∥

· µ∇B.

where B∗
∥ = b̂ · B∗, B∗ = B + ms

qs
Bv∥∇ × b̂.
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Taking a polynomial test function ζℓ ∈ Pm(K), K ∈ Th,ˆ
K

ζℓ

∂B∗
∥f

∂t
dz +

ˆ
∂K

ζℓ F (n,U)︸ ︷︷ ︸
numerical flux

dSσ −
ˆ

K

∂ζℓ

∂z · UB∗
∥fdz = 0.

Here, an upwind numerical flux is applied.
The solution can be approximated as

f(X, v∥, u; t) ≈
∑

ℓ

fℓ(t)ζℓ(X, v∥, u).

Using the DG representation of f and summing over all K ∈ Th, we have that∑
ℓ′

∑
K∈Th

⟨ζℓ, ξℓ′⟩K︸ ︷︷ ︸
M̂ℓℓ′ (=M̂ℓ′ℓ)

∂fℓ′

∂t
= −

∑
K∈Th

⟨ζℓ,F(n,UΓ)⟩∂K︸ ︷︷ ︸
Ŝℓ

+
∑

ℓ′

∑
K∈Th

〈
∂ζℓ

∂z · U, ξℓ′

〉
K︸ ︷︷ ︸

Êℓℓ′ (̸=Êℓ′ℓ)

fℓ′ ,

where

⟨v, w⟩K =
ˆ

K

vwB∗
∥RudRdzdv∥du, ⟨v, w⟩∂K =

ˆ
∂K

vwB∗
∥RudSσ.

A third-order SSP (Strong Stability Preserving) Runge–Kutta method.
Sigal Gottlieb, Chi-Wang Shu and Eitan Tadmor, SIAM Review Vol. 43, No. 1 (2001), pp. 89-112
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Implementation

M is a time-invariant positive definite matrix.
▶ Block diagonal matrix containing all elements of a parallel mesh part assigned to a single MPI process.
▶ The PARDISO performs LDLT -decomposition only once at the initial step.

To reduce computation time, the code precomputes the time-invariant terms.
ˆ

Γ
fhRuB

∗dSσ ≈
∑

ij

|JT |wiRiuiB
∗(zi)φ̂j(ẑj)︸ ︷︷ ︸

Cij

fj(t),

where wi, zi are quadrature rule on Γ, JT is the Jacobian matrix of the affine transform.
Process Time Memory

w/o precomputation 4,175 secs 144.8 MB per PE
/o precomputation 1,395 secs 204.0 MB per PE

-66.6% +40.9%

Vectorization (AVX512 supported by MKL, Eigen3)
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Convergence for interpolation
A convergence test for interpolation with the following target function.

f(R, z, v∥, u) = sin πR cosπz × sin 2πv∥ cos 2πu.
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The convergence rates are good agreement with the analytic convergence rates.
The L2-errors are estimated using

∥eh∥2
L2 =

ˆ
Ω

|Pf0 − f0|2RuB∗
∥dRdzdv∥du.
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Conservation test

For the conservation test, mass (ρ), kinetic energy (K), and toroidal canonical angular
momentum (Pϕ) are defined as follows.

ρ =
ˆ

Ω
fhB

∗
∥dz,

K =
ˆ

Ω
EKfhB

∗
∥dz, EK = v2

∥ + u2B/Bc,

Pϕ =
ˆ

Ω
pϕfhB

∗
∥dz, pϕ = Ziψ −miRv∥

Bϕ

B
,

where ψ, Bϕ and Zi are the poloidal magnetic flux, the toroidal component of magnetic field and
the ion charge, respectively.

In the concentric circular domain, an up-down symmetric boundary condition is assumed.

The mesh for the velocity space is fixed.
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For a test function g, we have

dB∗
∥fh

dt
= 0 ⇒

ˆ
Ω
g
dB∗

∥fh

dt
dz = 0.

The conservation properties can be expressed as

dρ

dt
= d

dt

ˆ
Ω

1fhB
∗
∥dz =

ˆ
Ω

1
dB∗

∥fh

dt
dz,

dK

dt
=
ˆ

Ω
EK

dB∗
∥fh

dt
dz, EK = v2

∥ + u2B/Bc,

dPϕ

dt
=
ˆ

Ω
pϕ

dB∗
∥fh

dt
dz, pϕ = Ziψ −miRv∥

Bϕ

B
,

▶ If 1 ∈ Wh, then ρ is conserved. → Constant basis. (automatically satisfied)
▶ If EK ∈ Wh, then K is conserved. → Quadratic basis.

The kinetic energy has quadratic terms in v∥ and u along with spatially varying B.
For the conservation of K, a quadratic basis is required.
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Conservation property with weighted polynomial basis
The weighed polynomial basis functions are used. For the weighting function, the canonical
Maxwellian is considered.
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The canonical angular momentum shows good conservation even with the linear weighted basis
function.
The kinetic energy conservation still requires a quadratic basis.
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Invariance test
The canonical Maxwellian is a stationary solution of the gyrokinetic equation.
As expected, the initial value fCM shows little change.
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Figure: Quadratic polynomial basis

The invariance is achieved even with the linear weighted polynomial basis.

−4 −2 0 2 4
v ∥ /vth

10−12

10−9

10−6

10−3

f(v
∥/
v t

h)

Initial∥step
Final∥step

0 1 2 3 4 5
u/vth

10−10

10−7

10−4

10−1

f(u
/v

th
)

Initial∥step
Final∥step

Figure: Linear weighted polynomial basis
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Parallelization performance test
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(a) Strong scaling: Measured run time
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(b) Parallelization efficiency

It is the ideal runtime, which is estimated as It = M/N where M is the measured time when using
smallest CPU cores.
The efficiency is estimated by the ratio between It and the measured time.
▶ The efficiency remains fairly high up to a few thousand cores.
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Summary

A gyrokinetic hyperbolic solver for general tokamak geometry was developed.
▶ The discontinuous Galerkin method with an unstructured mesh was employed.

The impact of basis functions on the conservation properties.
▶ The conservation of the mass was demonstrated up to the machine accuracy.
▶ A quadratic basis for the velocity space is required for kinetic energy.

Invariance in time with canonical Maxwellian initial value.
▶ A quadratic basis shows the invariance up to machine accuracy.
▶ A linear polynomial basis weighted by canonical Maxwellian can show the invarinace in a similar

level.

Parallelization performance.
▶ The new code is parallelized by MPI library using domain decomposition method with ghost layers.
▶ The solver has a good parallelization performance up to a few thousand ranks.
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Future work
Extending the solver to 5D by allowing toroidal variations.
▶ In extending the spatial domain from 2D to 3D, it is critical to suppress the increase of overall

computing cost within a manageable level.
▶ The development of a new scheme discretizes the spatial domain into 3D elements, which are

poloidally unstructured but toroidally aligned with equilibrium magnetic fields.
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Implementation of new numerical flux.
▶ Lax-Fredrich numeric flux, etc.

Collision operators and Maxwell equation solvers.
▶ The nonlinear operator have been developed.

(Dongkyu Kim, Janghoon Seo, Gahyung Jo, Jae-Min Kwon, Eisung Yoon*, Comput. Phys. Commun. (2022)
108459)
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