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Introduction

« To optimise an engineering design:
1. Describe the design parametrically.
2. Select an/some optimisation metric(s).

3. Seek the value(s) of your chosen parameter(s) which optimise your
chosen metric(s). 4

« Machine learning (ML) can intelligently select next
candidates during an optimisation sequence.

 This allows us to make best use of HPC resources:
reducing the number of expensive-to-evaluate HPC
simulations required to optimise the design.

x1 ||

 However, the engineer must select appropriate:
. Parameters to vary and their bounds.
. Optimisation criteria and their weights. v,
. Choice of ML technique to suit the problem. %1

A
v
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Seqguential Learning Engineering Design Optimisation

« Surrogate models & acquisition functions.
» Bayesian optimisation.
« Example: optimising a 2D Test Function.

Simple Divertor Monoblock Model

« Context for the model (HIVE Experiments).
 Building the model in MOOSE.
» Optimising the model in BoTorch.

Next steps

* Increasing model complexity.
* Improving the surrogate model.
« Exploring machine learning techniques.
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» Surrogate models & acquisition functions.
» Bayesian optimisation.
« Example: optimising a 2D Test Function.

Simple Divertor Monoblock Model

« Context for the model (HIVE Experiments).
 Building the model in MOOSE.
» Optimising the model in BoTorch.

Next steps

* Increasing model complexity.
* Improving the surrogate model.
« Exploring machine learning techniques.

4 | OFFICIAL - COMMERCIAL



Machine Learning for Sequential Learning Engineering Design Optimisation

Surrogate Models & Acquistion Functions

Surrogate models are statistical models trained on a dataset
used to interpolate between expensive-to-evaluate data.

e.g. a gaussian processor (GP)
Acquisition functions are cheap-to-evaluate functions used
as a loss-function when training surrogate models.

e.g. expected improvement (EI)
exploitation term exploration term

[u(x)-F(x*)-§]O(Z)Ho(x)9(Z)| ifo(x)>0
E1(x) {15 if 6(x)=0
z{ [u(x)-f(x*)-&]/0(x) if o(x)>0

0 if 6(x)=0

u(x): mean posterior o(x): std posterior

x*: best point so far f(x*): best value so far
O, ¢: CDF and PDF of normal distribution

€: exploration parameter (default = 0.01)

Key takeaway: exploitation vs exploration

5 OFFICIAL - COMMERCIAL

Above: GP model trained on noisy samples
for a simple 1D function: y = -sin(3x) - x2 + 0.7x

Below: EIl for the model, indicating the best
location to sample next.
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Bayesian Optimisation

"Sequential design strategy for global

optimisation of a black-box function." Simple 1D example.

lteration 1

« Goalis finding optimal design,
training the surrogate is a means to that end but
not the goal.

 Black-box is the HPC Simulation,
Inputs = simulation parameters
outputs = optimisation criteria

lteration 2

BayesOpt loop:
1. Train surrogate model on initial simulations.

2.  While acquisition f" > some threshold: [ ——,

i.  Optimise acquisition function to find the
best candidate to simulate next.

ii. Evaluate that point with a HPC simulation.
lii. Retrain model and repeat.

6 | OFFICIAL - COMMERCIAL
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Bayesian Optimisation:
2D Test Function

Three Hump Camel

Seeking global
minimum at (0, 0).
Three local minima.

I.e. must find the goal
while avoiding two traps.

I 16.0

X={x1, x2} 2D inputs
Y 1D output

7 | OFFICIAL - COMMERCIAL
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O PyTorch
& Bolorch

Bayesian Optimisation Loop
22.4 (note: Y inverted to seek Y, by maximising -Y)

- Three Hump Camel Bayesian Optimisation (iter 1)

- 0.0

12.8 o =1.2
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Simple Divertor Monoblock Model

» Context for the model (HIVE Experiments).
 Building the model in MOOSE.
* Optimising the model in BoTorch.

Next steps

* Increasing model complexity.
* Improving the surrogate model.
« Exploring machine learning techniques.
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Simplified Divertor Monoblock Model

« Adivertor monoblock is a modular cooling component used in tokamak divertors.

« Asimplified model containing a filled interlayer will be tested in HIVE; this makes an
iIdeal low-parameter component for a proof-of-concept optimisation.

Plasma-facing unit (PFU)

Monoblock

Cu interlayer

CuCrZr cooling tube

Monoblock detail within a tokamak divertor. HIVE testing facility.

Image source: Pitts et al. (2017) Image source: CCFE website Si mple monoblock

physical model.
9 | OFFICIAL - COMMERCIAL Photos by: Adel Tayeb, UKAEA
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Simplified Divertor Monoblock Model
I MOOSE

« Steady state
thermomechanical solution.

1.90804e-5

- Parametric geometry &
meshing. .

« Stress-free temp 20°C. i e

* Uniform temp 100°C. | i -

 Model pinned at base,
allowed to deform elsewhere.

Displacement magnitude field.

1 0 OFFICIAL - COMMERCIAL
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Simplified Divertor Monoblock Model

I MOOSE

« Steady state

thermomechanical solution.

« Parametric geometry &
meshing.

« Stress-free temp 20°C.
e Uniform temp 100°C.
 Model pinned at base,

allowed to deform elsewhere.
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3.59412e+8
i
2.3978e+8

1.20147e+8

Thermal expansion (Von Mises) stress field.
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Simplified Divertor Monoblock Model Ay

I MOOSE

\ns

zzzzzz

Displacement
Magnitude

Thermal
Stress

Validation of results against
Ansys models.
Ansys models by: Lloyd Fletcher, UKAEA
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Optimising the Model

Using the same GP + El model as before, with
the following chosen parameters:

Simple Monoblock Bayesian Optimisation (iter 1)

« x1=monoblock width 0.30 5 s
X2 =armour height
* Y =maximum thermal stress e - [ 030
“ 0.15
E) Q.20 | 0.00
(0]
=~ ~0.15
g 0.15 =
—-0.30
£
< 0.10 ~0.45
—0.60
0.05
| 4 e, A -0.75
’,’ //"‘Q'. =X
"‘g"’luﬁ“::‘”z A ——4 ~0.90
'.'. "..'_.'555“ _‘“ 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Monoblock Width
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Optimising the Model: Results

Optimal design found at:
width = 83 mm,
armour height =1 mm
Compared to original settings:

width = 23 mm,
armour height = 8 mm

Issues:

 Only stress is considered.

A full physics model should be multi-
objective: also minimising the required
pumping power to maintain operational
temperatures.

« Too few parameters.

Creates a non-representative design
space for fusion problems. A full
physics model will produce a higher
dimensional design space.

1 4 | OFFICIAL - COMMERCIAL

Original
design

Optimised
design

/

Simple Monoblock Bayesian Optimisation

UK Atomic

Energy
Authority
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Next steps

* Increasing model complexity.
* Improving the surrogate model.
* Exploring machine learning techniques.
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Next Steps: Model Complexity

1. Intermediate complexity model:
I. Add copper pipe, bringing ng;, = 6.

li. Add directional heat flux on the Monoblock
armaour. (Tungsten)

lii. Add cooling as convection flux on Interlayer Cooling tube
pipe. (CuCrZr) (copper)

2. Full Physics model: N\

I.  Add non-linear materials
including plasticity & visco-plasticity.

li. Add cooling as coupled CFD
(computational fluid dynamics).

lii. Run transient simulation
with full thermal history (manufacturing phase
& thermal pulses during operational phase in a
tokamak).

Basic schematic of full physics model

1 6 | OFFICIAL - COMMERCIAL
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Next Steps: Surrogate Modelling

1. Run multi-objective optimisation:

I.  Avoid maximum temperature
exceeding operational limits. Note: this
IS a non-linear step discontinuity.

ll. Minimise pumping power in CFD on o
full physics model.

1.0

0.8

086

2. Improve sample plan:

I. Initial samples were selected
randomly from a uniform distribution .
within the bounds. Using a rule of
thumb: 10 x ndim = 20 points.

li. A more sophisticated sample plan
(e.g. Latin Hypercube) would improve 00 0.2 04 06 08 1.0
the initial surrogate model.

Farameter 2
L

04

02

0.0

Parameter 1

2D Latin Hypercube with 5 points
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Next Steps: Exploring ML Techniques

* Neural network (NN)

« strength: identifying non-linear patterns in design
space

« challenge: lack of well-defined acquisition functions

* Physics-informed neural network (PINN)

« strength: encoding known physics to train well on
small datasets

« challenge: lack of well-defined acquisition functions

« Particle swarm optimisation
« strength: parallel optimisation, built-in exploration

« challenge: potential overuse of HPC simulations as
the model is updated after multiple parallel
simulations

1 8 | OFFICIAL - COMMERCIAL

input
layer

hidden output
layer layer

Left: Simple NN, Right: PINN
Images from: Wikipedia

Sphere function - [1/100] w:0.800 - ¢;:3.500 - ¢;:0.500

Particle swarm optimisation
Visualisation by: Axel Thevenot, Towards Data Science
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« Machine Learning for Component Validation

« A summer student placement project
to utilise ML methods for data validation of HIVE
monoblock experiments.

* Project will use the MOOSE monoblock models
generated in this project.

 Proteus Development

 Proteus is a MOOSE app focussed on coupled
fluid dynamics, developed as part of the Aurora
multiphysics package.

« The monoblock simulations are being
contributed to Proteus as example
thermomechanical problems.

(DIC) setup gathering thermal
stress data from the simple

monoblock model.
Photos by: Adel Tayeb, UKAEA
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Summary

ML allows us to make best use of HPC
resources in sequential learning engineering
design optimisation.

 Proof of concept Bayesian optimisation of a
simple divertor monoblock.

 Next steps towards a range of optimisation Please feel free to contact me with

. ] I t-/ 7/ db 7 d l’.—/ /
techniques on multiple levels of complexity. questions, feedback, and suggestions
Luke Humphrey

Graduate Software Engineer
Advanced Computing Department
UK Atomic Energy Authority

e-mail: luke.humphrey@ukaea.uk
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