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Introduction

• To optimise an engineering design:
1. Describe the design parametrically.

2. Select an/some optimisation metric(s).

3. Seek the value(s) of your chosen parameter(s) which optimise your 
chosen metric(s).

• Machine learning (ML) can intelligently select next 
candidates during an optimisation sequence.

• This allows us to make best use of HPC resources:
reducing the number of expensive-to-evaluate HPC 
simulations required to optimise the design.

• However, the engineer must select appropriate:
• Parameters to vary and their bounds.

• Optimisation criteria and their weights.

• Choice of ML technique to suit the problem.
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In this talk...
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Sequential Learning Engineering Design Optimisation

• Surrogate models & acquisition functions.

• Bayesian optimisation.

• Example: optimising a 2D Test Function.

Simple Divertor Monoblock Model

• Context for the model (HIVE Experiments).

• Building the model in MOOSE.

• Optimising the model in BoTorch.

Next steps

• Increasing model complexity.

• Improving the surrogate model.

• Exploring machine learning techniques.
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Surrogate Models & Acquistion Functions

Surrogate models are statistical models trained on a dataset 
used to interpolate between expensive-to-evaluate data.

e.g. a gaussian processor (GP)

Acquisition functions are cheap-to-evaluate functions used 
as a loss-function when training surrogate models.

e.g. expected improvement (EI)
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Above: GP model trained on noisy samples 
for a simple 1D function: y = -sin(3x) - x2 + 0.7x

Below: EI for the model, indicating the best 
location to sample next.

y

x

x
EI

EI(x)
[µ(x)-f(x+)-ξ]Φ(Z)+σ(x)ϕ(Z) if σ(x)>0
0 if σ(x)=0

Z
[µ(x)-f(x+)-ξ]/σ(x) if σ(x)>0
0 if σ(x)=0

exploration termexploitation term

µ(x): mean posterior σ(x): std posterior
x+: best point so far f(x+): best value so far
Φ, ϕ: CDF and PDF of normal distribution
ξ: exploration parameter (default = 0.01)

Key takeaway: exploitation vs exploration
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"Sequential design strategy for global 
optimisation of a black-box function."

• Goal is finding optimal design,
training the surrogate is a means to that end but 
not the goal.

• Black-box is the HPC Simulation,
inputs = simulation parameters
outputs = optimisation criteria

1. Train surrogate model on initial simulations.

2. While acquisition fn > some threshold:

i. Optimise acquisition function to find the 
best candidate to simulate next.

ii. Evaluate that point with a HPC simulation.

iii. Retrain model and repeat.
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Bayesian Optimisation

BayesOpt loop:

Simple 1D example.
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Bayesian Optimisation:
2D Test Function
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X={x1, x2} 2D inputs
Y 1D output

Three Hump Camel Bayesian Optimisation Loop
(note: Y inverted to seek Ymin by maximising -Y)

Seeking global 

minimum at (0, 0).

Three local minima.

i.e. must find the goal 

while avoiding two traps.

Y
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Simplified Divertor Monoblock Model

• A divertor monoblock is a modular cooling component used in tokamak divertors.

• A simplified model containing a filled interlayer will be tested in HIVE; this makes an 
ideal low-parameter component for a proof-of-concept optimisation.

OFFICIAL - COMMERCIAL9

Machine Learning for Sequential Learning Engineering Design Optimisation

Monoblock detail within a tokamak divertor.
Image source: Pitts et al. (2017)

HIVE testing facility.
Image source: CCFE website Simple monoblock

physical model.
Photos by: Adel Tayeb, UKAEA
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• Steady state 
thermomechanical solution.

• Parametric geometry & 
meshing.

• Stress-free temp 20°C.

• Uniform temp 100°C.

• Model pinned at base, 
allowed to deform elsewhere.
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Simplified Divertor Monoblock Model

Displacement magnitude field.
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Simplified Divertor Monoblock Model

Thermal expansion (Von Mises) stress field.
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Simplified Divertor Monoblock Model

Validation of results against 
Ansys models.
Ansys models by: Lloyd Fletcher, UKAEA

Displacement

Magnitude

Thermal

Stress
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Optimising the Model
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Using the same GP + EI model as before, with 
the following chosen parameters:
• x1 = monoblock width

• x2 = armour height

• Y = maximum thermal stress
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Optimising the Model: Results
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Optimal design found at:
width = 83 mm,
armour height = 1 mm

Compared to original settings:
width = 23 mm,
armour height = 8 mm

Issues:
• Only stress is considered.

A full physics model should be multi-
objective: also minimising the required 
pumping power to maintain operational 
temperatures.

• Too few parameters.
Creates a non-representative design 
space for fusion problems. A full 
physics model will produce a higher 
dimensional design space. Monoblock Width

Original
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Next Steps: Model Complexity

1. Intermediate complexity model:
i. Add copper pipe, bringing ndim = 6.

ii. Add directional heat flux on the 
armour.

iii. Add cooling as convection flux on 
pipe.

2. Full Physics model:
i. Add non-linear materials

including plasticity & visco-plasticity.

ii. Add cooling as coupled CFD
(computational fluid dynamics).

iii. Run transient simulation
with full thermal history (manufacturing phase 
& thermal pulses during operational phase in a 
tokamak).
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Fluid 

Region

(Water)

Basic schematic of full physics model

Heat

Flux

Monoblock

(Tungsten)

Interlayer

(CuCrZr)

Cooling tube

(copper)
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Next Steps: Surrogate Modelling

1. Run multi-objective optimisation:

i. Avoid maximum temperature 
exceeding operational limits. Note: this 
is a non-linear step discontinuity.

ii. Minimise pumping power in CFD on 
full physics model.

2. Improve sample plan:

i. Initial samples were selected 
randomly from a uniform distribution
within the bounds. Using a rule of 
thumb: 10 x ndim = 20 points.

ii. A more sophisticated sample plan 
(e.g. Latin Hypercube) would improve 
the initial surrogate model.
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2D Latin Hypercube with 5 points
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Next Steps: Exploring ML Techniques

• Neural network (NN)

• strength: identifying non-linear patterns in design 
space

• challenge: lack of well-defined acquisition functions

• Physics-informed neural network (PINN)

• strength: encoding known physics to train well on 
small datasets

• challenge: lack of well-defined acquisition functions

• Particle swarm optimisation

• strength: parallel optimisation, built-in exploration

• challenge: potential overuse of HPC simulations as 
the model is updated after multiple parallel 
simulations
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Left: Simple NN, Right: PINN
Images from: Wikipedia

Particle swarm optimisation
Visualisation by: Axel Thevenot, Towards Data Science
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Related Projects

• Machine Learning for Component Validation

• A summer student placement project
to utilise ML methods for data validation of HIVE 
monoblock experiments.

• Project will use the MOOSE monoblock models 
generated in this project.

• Proteus Development

• Proteus is a MOOSE app focussed on coupled 
fluid dynamics, developed as part of the Aurora 
multiphysics package.

• The monoblock simulations are being 
contributed to Proteus as example 
thermomechanical problems.
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Stereo digital image correlation 

(DIC) setup gathering thermal 

stress data from the simple 

monoblock model.
Photos by: Adel Tayeb, UKAEA
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Summary

• ML allows us to make best use of HPC 
resources in sequential learning engineering 
design optimisation.

• Proof of concept Bayesian optimisation of a 
simple divertor monoblock.

• Next steps towards a range of optimisation 
techniques on multiple levels of complexity.
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Please feel free to contact me with 
questions, feedback, and suggestions!

Luke Humphrey

Graduate Software Engineer
Advanced Computing Department
UK Atomic Energy Authority

e-mail: luke.humphrey@ukaea.uk

mailto:luke.humphrey@ukaea.uk
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