

Influence of W/W grain boundaries on Helium behaviour by means of combined MD and DFT approach

Jorge Suárez Recio, Raquel González Arrabal, Roberto Iglesias Pastrana, Julio Gutiérrez Moreno

December 2022

3rd Fusion HPC Workshop

1. Why fusion? What is expected?

Future fusion Nuclear Power Plants (NPPs) are expected to provide mankind a sustainable energy source and to contribute to the energy required satisfy the growing demand of energy and to limit global warming

- Fusion offers important advantages:
 - No carbon emissions therefore, no air pollution
 - Unlimited fuel
 - Intrinsically safe

Crucial issues for reactor availability

• Plasma Facing Materials (SDG7)

Plasma facing materials are those directly exposed to:

- The plasma in magnetic fusion (PFM)
- To the explosion threats in inertial fusion confinement (PFM or FW)

Assignment: protect the structural materials located underneath

• The main threats depend on the radiation conditions \rightarrow reactor configuration

Introduction

Published in: R. Gonzalez-Arrabal; A. Rivera; J. M. Perlado; *Matter and Radiation at Extremes* **5**, 055201 (2020) DOI: 10.1063/5.0010954

Introduction

Introduction

The main requirements that must be met are summarized in:

- Good structural stability always have to be there
- Highly resistant thermal shocks
- High thermal conductivity
- High melting point
- Low physical and chemical sputtering
- Compatibility with the refrigerant
- Low retention of Tritium

PFM: candidates

POLITÉCNICA

- W (coarse grained W) used to be the most promising one
- Other candidates:
 - Be (low melting point, $T_m \sim 1287 \text{ eC}$)
 - Carbon fibre composites (CFCs)
 - Good thermal conductivity (similar to that of Cu), but it strongly degrades in the presence of irradiation
 - Tritium retention \rightarrow licensing problems

• W (coarse grained W) used to be the most promising one

- Low sputtering yields
- High thermal conductivity (174 W/Km) 🗹
- High melting point (3410 °C) 🔽

PFM: candidates

• W (coarse grained W) used to be the most promising one

- Low sputtering yields
- High thermal conductivity (174 W/Km) 🔽
- High melting point (3410 °C) 🔽

- Oxidation at elevated temperatures
- Low recrystallization temperature () X
- High ductile-brittle transition temperature (423-673 K)
- Low elastic limit 💢
- High capacity to retain light species (He and H)

PFM: alternatives (W nanostructured)

- Self-healing 🔽
- Delay the pressurized bubble formation

I. J. Beyerlein et al. Materials Today 16 (2013) 443-449.

PFM: alternatives (W nanostructured)

• Self-healing 🔽

 Delay the pressurized bubble formation

I. J. Beyerlein et al. Materials Today 16 (2013) 443-449.

W(110) / W(112) Interface

W(110) / W(112) interface

• 456 atoms

W(110) / W(112) Interface

W(110) / W(112) interface

• 456 atoms

Methodology

DFT:

- Accuracy 🔽
- High computational cost
- Limited few hundred atoms
- NO temperature

CONVERGENCE PROBLEM!

Methodology

DFT:

- Accuracy 🔽
- High computational cost
- Limited few hundred atoms
- NO temperature

CONVERGENCE PROBLEM!

MD:

- Large system and long times
- Several orders magnitude faster than DFT
- Apply temperature 🗹
- Interatomic Potential X

Methodology

DFT:

- Accuracy 🗹
- High computational cost
- Limited few hundred atoms
- NO temperature

CONVERGENCE PROBLEM!

- Improve starting point
- Run MD bigger systems with temperature

MD:

Large system and long times

- Apply temperature 🔽
- Interatomic Potential

Migration Barriers

 Nudged Elastic Band (NEB)

Reaction Coordinate

DFT

9 He atoms

- Clearly motivated the study of self-healing in nanostructured W under the presence of He
- Great gain of computational time by means of a combined MD + DFT approach vs. DFT alone
- Energetic and structural analysis of the simultaneous presence of He, SIA and vacancy
- Study of defect migration barriers along the W(110) / W(112) interface to assess if it acts as an *effective diffusion channel* or it undergoes *GB decohesion*.
- Work in progress

CONCLUSIONS

THANK YOU FOR YOUR ATTENTION!!!