NuFI: The numerical flow iteration for the Vlasov–Poisson equation

Rostislav-Paul Wilhelm Matthias Kirchhart

December 12, 2022

● Vlasov–Poisson equation

❷ NuFI

Over the second seco

Conclusion

Vlasov–Poisson equation

Numerical experiments

The Vlasov–Poisson equation

Kinetic model for collective electron behaviour

$$\partial_t f + \mathbf{v} \cdot \nabla_x f - \underbrace{E \cdot \nabla_v f}_{\text{Neglect magnetic}} = \underbrace{\mathbf{0}}_{\substack{\text{Neglect collisions:}\\ Q(f,f) = \mathbf{0}.}}$$

The Poisson equation for E reads:

$$egin{aligned} & \mathcal{E}(t,x) = -
abla_x arphi(t,x), \ & \Delta_x arphi(t,x) = -
ho(t,x) \ &
ho(t,x) = 1 - \int_{\mathbb{R}^d} f(t,x,v) \mathrm{d}v. \end{aligned}$$

Problems with solving Vlasov equation numerically

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathsf{x}} f - E \cdot \nabla_{\mathsf{v}} f = 0$$
$$f : \mathbb{R}_{\geq 0} \times \mathbb{T}^d \times \mathbb{R}^d \to \mathbb{R}_{\geq 0}$$

High-dimensional equation: Full Vlasov equation for 1 species is a 7-dimensional PDE.
 Grid-based solvers suffer from extensive memory-usage.

- Lack of diffusion in the model leads to strong filamentation in the solution for long-times.
 - > Steep gradients \Rightarrow Practically impossible to resolve.
 - DSMC/SPH/PIC require high resolution and remeshing.

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	⊙●○○○	0000	00

Motivation

Note:

$$\partial_t f + \left(\begin{pmatrix} v \\ -E \end{pmatrix} \cdot \nabla_{(x,v)} \right) f = 0 \quad \Rightarrow \quad f(t,x,v) = f_0(\Phi^0_t(x,v))$$

Where:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi^{s}_{t}(x,v)=a(t,x,v),\quad \Phi^{s}_{s}(x,v)=(x,v)$$

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	00●00	0000	00

Approximating the phase-flow

Iterative approximation of $\Phi_{t_k}^{t_{k-1}}$ via symplectic Euler:

$$x_{k-1} := x_k - \Delta t \cdot v_k,$$

$$v_{k-1} := v_k + \Delta t \cdot E(t_{k-1}, x_{k-1}),$$
Electric field is known at previous time-step!

For **nonlinear case**, $t = t_k$:

- **1** Compute ρ_k using numerical quadrature.
- **2** Compute electric potential φ_k from ρ_k using FFT.
- **3** Save coefficients of φ_k in B-Spline basis.

Repeat for $t_k \rightarrow t_{k+1}!$

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	000●0	0000	00

Memory usage

No need to save f!

- Saving φ_h .
- · Shift workload from "memory access" to "computation on the fly":
 - ➤ High flop/Byte ratio.
 - > Cache can store coefficients of φ_h for several time-steps.

Memory Requirement **Grid** = $N_x^d \times N_v^d \times \text{size}$ of one floating point value Memory Requirement **NuFI** = $n \times N_x^d \times \text{size}$ of one floating point value

Where *n* number of time-steps: $n \ll N_v^d$.

d	$N_x = N_v$	Memory of φ_h per step	Memory for storing f
2	128	0.125 MiB	$ \approx 2.0 \cdot 10^3 \text{ MiB} \\ \approx 3.3 \cdot 10^4 \text{ MiB} \\ \approx 5.2 \cdot 10^5 \text{ MiB} $
2	256	0.5 MiB	
2	512	2 MiB	
3	128	0.015 GiB	$\begin{array}{l} \approx 3.3 \cdot 10^4 \ \text{GiB} \\ \approx 2.1 \cdot 10^6 \ \text{GiB} \\ \approx 1.3 \cdot 10^8 \ \text{GiB} \end{array}$
3	256	0.125 GiB	
3	512	1 GiB	

Numerical experiments

100

100

Conservation properties of NuFI

$$f_h(t,x,v)=f_0(\Phi^0_{t,h}(x,v))$$

Satisfies the maximum principle exactly $= L/32, h_{-} = v_{max}/64$ 1.0 L/64, $h_v = v_{max}/128$ $0 < f_h(t, x, v) \leq \|f_0\|_{L^{\infty}(\Omega \times \mathbb{R}^d)}$ $L/128, h_{\pi} = v$ Ξ 0.5 entropy 0.0 error of Exact conservation of all L^p-norms Re]. $\frac{\mathrm{d}}{\mathrm{d}t}\left(\int f_h\left(t,x,v\right)^p\mathrm{d}x\mathrm{d}v\right)=0$ and the kinetic entropy nergy in % $\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathbb{T}^d} \int_{\mathbb{T}^d} f_h \log(f_h) \mathrm{d}x \mathrm{d}v \right) = 0.$ error of total e 0.0 -0.5Numerical proof for conservation of total energy Rel $\frac{\mathrm{d}}{\mathrm{d}t} \Big(\int_{\mathbb{T}^d} \int_{\mathbb{T}^d} v^2 f_h \mathrm{d}x \mathrm{d}v + \int_{\mathbb{T}^d} E_h^2 \mathrm{d}x \Big) = 0.$ 20 30 90 80

Relative errors - computed using **numerical quadrature**:

Numerical experiments

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	00000	O●OO	00

Two-Stream instability

$$f_0(x,v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}} v^2 (1 + 0.01 \cos(0.5x))$$

- > Dynamics captured correctly.
- > Low resolution leads to distortion.

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	00000	○○●○	00

Errors

Two Stream 1d ($h \rightarrow 0$, Δt fixed): Single- (left) & double precision (right).

Two Stream 2d (single precision): $h \rightarrow 0$ left & $\Delta t \rightarrow 0$ right.

Attented UNIVERSIT

Vlasov–Poisson equation	NuFI	Numerical experiments	Conclusion
000	00000		00

Computational complexity and scaling

Two-stream benchmark: d = 1 (left) & d = 2 (right). $N_T = 481$ time-steps.

 \Rightarrow Computational complexity **linear** in number of quadrature points!

 \Rightarrow Strong scaling.

Conclusion

Vlasov–Poisson equation	NuFl	Numerical experiments	Conclusion
000	00000	0000	O

Summary

Conclusion:

- All DOF in phase-space are independent of each other!
 - Embarrassingly parallel algorithm.
- Very low memory usage.
 - Never save f!
- Comes at cost of increasing complexity with number of time-steps.
- Exact conservation of properties.

Future research:

- Enabling restart of simulation & starting from experimental data.
- Collision-handling. \longrightarrow Evaluation of Q(f, f) still expensive.

Wilhelm, R.-P., ACoM RWTH Aachen, wilhelm@acom.rwth-aachen.de Kirchhart, M., ACoM RWTH Aachen and Intel Co., matthias.kirchhart@intel.com

