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Part I. Basic processes defined for (d-Li) atomic and nuclear interactions.
lllustration on a simple model of cylindrical solid Li inside the aluminum
capsule.

Part Il: Application of the d-Li accelerator-based intense neutron source
of IFMIF-DONES for fusion applications.

Conclusions

Backup slides:
* McDeLicious code parallelization on Marconi-Fusion HPC
* Use of On-The-Fly (OTF) Monte Carlo variance reduction technique
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MCNP is a code for radiation transport calculations in 3D geometry. .
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Reference:
[1] Avneet Sood, 2017. The Monte Carlo Method and MCNP-A Brief Review of Our 40 Year History, Presentation to the International

Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications Conference.
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McDelLicious code development history (@)

McDelicious is an extension to the MCNP Monte Carlo code with the ability to simulate the
generation of source neutrons based on deuteron - lithium (D-Li) interaction processes

* 1999:

+ 2001:

* 2005:

» 2011:

» 2017:

McDelLi (P. Wilson, Report FZKA 6218, 1999):

- An enhancement to MCNP-4a to sample the generation of d-Li source neutrons based on embedded
analytical formulas representing direct deuteron striping (Serber model) and compound reactions.
McDelLicious (S.P.Simakov et al. J.Nucl.Mat.307-311(2002)1710, FZKA 6743)

- An enhancement to MCNP-4b,c to sample the d-Li source neutrons on the basis of tabulated double-
differential d + 6,7Li cross-sections for deuteron energies up to 50 MeV (evaluated by A. Konobeyev et al.,
NSE 139 (2001)1).

McDeLicious-05 — compilation with MCNP-5 and use tabulated double-differential cross-sections from
updated d + 6,7Li evaluation (made by P. Pereslavtsev et al., J.Nucl.Mat.367-370(2007)1531).
McDelLicious-11 - a new approach is implemented to enable direct sampling from the tabulated deuteron
beam distribution data without using fitting functions. In this approach, the beam entry position is sampled from
tabulated data representing the intensity distribution of the impinging deuteron beam — (S. P. Simakov et al.,
“Status of the McDeLicious approach for the D-Li neutron source term modeling in IFMIF neutronics
calculations,” Fusion Sci. Technol., 62 (2012), pp. 233-239)

McDelLicious-17 — the actual version of McDelLicious upgraded to MCNP version 6.1.0, an extension of the
MCNP Monte Carlo code with the capability to simulate the deuterium-lithium neutron source on the basis of
evaluated d + 6,7Li cross-section data. This code has been tested and confirmed to generate identical source
particle data as the previous version McDeLicious-11 — (Y. Qiu et al., “IFMIF-DONES HFTM neutronics
modeling and nuclear response analyses,” Nuclear Materials and Energy, 15 (2018), pp. 185-189)



(FMIF =
77N\
LY@ NE;J% L2 )
Part |

Basic processes defined for (d-Li) atomic and nuclear
Interactions. lllustration on a simple model of cylindrical
solid Li inside the aluminum capsule



'FM‘;) Basic nuclear processes in IFMIF
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Thick Li-target neutron source: Energy-Angular Yield

Ed =40 MeV
Exp.: M. Hagiwara et al.
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Ref: S.P. Simakov, McDelicious Workshop, FZK/IRS, Institut fir Reaktorsicherheit, Forschungszentrum Karlsruhe, 13-14 March 2008
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Total deuteron flux, d/cm2/s
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Simple Model: cylindrical solid Li inside Aluminum capsule ; "
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Total deuteron flux, d/cm2/s
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Part Il

Application of the d-Li accelerator-based intense neutron
source of IFMIF-DONES for fusion applications
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D OINE DONES Programme, IFMIF-DONES Espafia to build the DONES facility L=

The International Fusion Materials Irradiation Facility—DEMO Oriented NEutron Source DONES building
(IFMIF-DONES) aims to evaluate and validate the structural and functional materials for CAD model
developing DEMO-type reactors. To achieve this ambitious goal, several projects have
been promoted in recent years, which together form the DONES Programme.

The objective of the DONES Programme is not only for building
DONES Progmmm Phases the IFMIF Facility... but also to operate and to exploit it!!
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in research units and industry (TC)
Site Selection - Selection of Eschzar site N\ mn ",,.sm
Process ENERGY near Granada, Spain "

- oowes.
OQO Phase

IFMIF-DONES being recognized as
one of the strategic research
infrastructures in Europe — ESFRI

|2NES
Roodmup 2018 -

Construction of IFMIF-DONES Facility. \
stort of Consttucllon Phase 2023. po—
timelOyears

Integrated beam
commissioning and
power ramp-up

IFMIF-DONES is designed for 30 years
of lifetime (20 years of full operation)
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* The CAD model of IFMIF-DONES building is prepared (simplified and decomposed) for the CAD-to-MCNP conversion using the codes:
McCad (INR-KIT developed) or SuperMC (developed by FDS-team, China)

* McDelLicious-17 code package developed at INR-KIT — an MCNP6 code modification for deuteron-lithium (d-Li) nuclear reactions in Li
of IFMIF-DONES Test Cell. The beam of deuteron ions accelerated up to 40 MeV with current of 125 mA impinges the liquid Li target
delivering 5 MW power. The Li target volume is 5x20%x2.5 cm3
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| |
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Neutron Spectra (1Icm2!sldelta In(MeV))
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Dé::;;*i Neutronics geometry of the accelerator systems
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| Acceleratgr vault key components of the Target
S . Assembly (TA) and the High Flux Test

Module (HFTM)
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Target Assembly (TA) " Target Assembly (TA)
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» D+ ion beam stops in the lithium jet delivering a total power of 5 MW on

a volume of 5x20x2.5 cm?, with d-Li footprint area of 5x20 cm?2.
» Deuterons lose their energy in Li by interactions with Li electron clouds
and nuclei — all the processes have been taken into account in the MCNP6

energy deposition calculations with the TMESH card.

» For calculation of deuteron beam energy deposition in Li at the d-Li
footprint area, transport of neutrons, photons, deuterons, and protons

— 4 particles have been transported with the MCNP6 mode np d h

Horizontal cut of the MCNP6 geometry at d-Li footprint

- HFTM

Li

LLLLL

Click here or ploturs or Keru

Energy deposition, W/cc
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in Cell 34179
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Restore HT+Cell

PostSeript ROTATE

SCALES 1 LEVEL

L1 off

LEGEND on

2,8426403 {
1,686E+03 |

o
1,000E403 |

L2 off =10 -

Deuteron beam energy deposition in the Li jet at the TA d-L.i footprint area

MCNP6 TMESH result
for 0.5x1x1 mm?3 (xyz)
mesh

MCNP6 horizontal cut of the D+ beam energy deposition
at the d-L.i footprint area with heat peak of 110 kW/cc
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DONES High-Flux
Test Module (HFTM)
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% Energy Deposition ! ] =
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= 40 k- £ =40+ 0.5 MeV . N 250 =
o = |' E ~
L euteron Energy : 1200 .
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Depth in Lithium Target, cm

- Deuteron track length reach 2.1 cm;
- Peak Energy Deposition is 150 kW/cc at the depth of 2.0 cm (at the end of d-track)
- Average energy deposition in Li jet = (40 MeV x 250 mA=10,000 kW)/(20x5x2 cc) =50 kW/cc

Ref: S.P. Simakov, McDelicious Workshop, FZK/IRS, Institut fiir Reaktorsicherheit, Forschungszentrum Karlsruhe, 13-14 March 2008
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Ld=19.8 mm for Ed=40.0 MeV

Ld=20.3 mm for Ed=40.5 MeV

Deuteron track depth (longitudinal, Ld) dependence on the D+ energy (Ed)
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D+ beam profile (IFMIF/EVEDA) Heat deposition in Li-Target plane section x=-0.875 cmy, .

00057

Upper and lower sides

MCNP6 map

00051

E

00046

0.0040

g

°

0.0034
0002 Plane section x= -0.875 cm
00023 Curved surface
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peak at the d-Li
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00011
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Source:

Upper side

. 1 1008405 ‘
9.789E+04 ] Curved surface of Bragg
8,578E+04

peak layer located
<« atx=-0.84cm at 7=0

central cutting plane

7.367E404
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4,944E404
3.7336+04

Heat at peak is 110 kW/cc
Integral D+ heat 4.8 MW

D+ beam energy
deposition, W/ce

Lower side

Energy deposition (W/cc)

Notice: Bragg peak at Lithium

thickness of 1.86 cm corresponds , . .
t0:i01.88 e conrdingtedinihe | MCNPG6 horizontal-vertical map of D+ energy
MCNP model geometry with X=0 at «|  deposition (W/cc) at X=-0.84 cm F
the TA back plate and X=-2.7cm is
the front point of Li at Z=0 central
plane: 1.86cm - 2.7cm = -0.84cm ‘ ‘ ' ‘
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Nuclear heat density (W/cc) in the TA materials of the MCNP model
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Neutron heat density, W/cc

IR

T e
°
&

0
o

|
o
?
o
S

Fig. 1. Neutron heat density (W/cc) in actual materials
of the MCNP model — look from the outside.

0.1
0.01

T

Photon heat density, W/cc

il
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Fig. 2. Photon heat density (W/cc) in actual materials of
the MCNP model — look from the outside.

f
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Total (neutron + photon) heat density, W/cc

Fig. 3. Total (neutron + photon) heat density (W/cc) in
actual materials of the model — look from the outside.

TA materials:

Steel $S316L material
density 7.93 g/cc

EUROFER steel with
density 7.87 g/cc

Lithium (Li) with
impurities, its density
is 0.512 g/cc.

Heating in Li jet at the
area of deuteron
footprint requires
inclusion of the heat
contributions of
charged particles.




JFMtF ) Power balance for the D+ beam energy released in Test Cell (TC) and internal components {(f?}\)
> =
Type of heat power Heat, kW
Input heat power of D+ beam 5000

delivered by the IFMIF-DONES one
accelerator beam current of =125 mA

D+ heat released in Li Target 4858.8

Neutron + Photon heat released in
the TC components (numbered and
displayed in the next slide):

‘ A . _ 1) TC liner 15.2
Rases = e f————— - . 3 j - 2) Removable Biological Shielding 77.3
; o || Blocks

RBSB2 3) Bucket liner 0.2
4) Bucket 1.6
5) Piping and Cabling Plugs (PCP) 2.6
6) Lower Shielding Plug (LSP) 9.9
7) Upper Shielding Plug (USP) 0.01
The sum of 7 TC components: 107
Target Assembly (TA) structural parts 17.3
High Flux Test Module (HFTM) 16.9

Integral neutron and photon heat in ~141.2

all considered TC components
,,,,,,,,,,,,,,,,, Output: total integral heat released | 4858.8+141.2
by D+, neutrons, and photons: = 5000
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Test Cell Cover Plate
(TCCP)

7 Heat 0.01 kW
Upper shielding plug
(UsP)

6 Heat 9.9 kW
Lower shielding plug
(LSP)

2 Heat77 kW

Removable Biological

Shielding Blocks
(RBSB)

Heat 17.3 kW
Target system
+
HFTM
Heat 16.9 kW

The sum of 7 Test
Cell components is
107 kW

5 Heat 2.6 kW
Pipeing & cabling plugs
(PCP)

3 Heat0.2 kW

Bucket liner

4 Heat 1.6 kW

Bucket TC liner
1

Heat 15 kW
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» The interactions of deuterons with lithium target for the energies relevant to fusion applications, particularly
Ed=40 MeV in IFMIF-DONES facility, are most accurately described with the McDeLicious code in its actual version
McDelLicious-17, as an extension of the MCNP6.1 Monte Carlo radiation transport code. The McDeLicious code has
been validated & verified in experimental and computational benchmarks.

* Using the D+ beam settings, McDeLicious samples neutrons and photons using evaluated d+ &7Li data.

» The simple model of D+ interactions with cylindrical solid Li inside Aluminum capsule allows to investigate the D+ flux
attenuation, track length, Ed attenuation, and D+ energy deposition. This work presented simple model with two
settings of the D+ sources:

V1: Isotropic uniformly distributed disk
V2: Monodirectional directed source defined at a disk

* The (d-Li) reactions defined in McDeLicious-17 have been studied for the IFMIF-DONES facility. The beam of
deuteron ions accelerated up to 40 MeV with current of 125 mA impinges the liquid Li target delivering 5 MW power.
The presented results include distributions of D+ energy deposition, neutron and photon fluxes and heating.

* The integral heating calculations in IFMIF-DONES Test Cell (TC) components reveals that D+ energy deposition in
liquid Li at thin Bragg peak with a D+ beam footprint area of 20x5 cm?2 contributes 97% of total heating in the whole
Test Cell volume. The 5 MW heat power of D+ beam delivered by the IFMIF-DONES is released by 97% in liquid
lithium.
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Backup slides:

Additional information about
1) McDelicious code parallelization on
Marconi-Fusion HPC
2) Use of On-The-Fly (OTF) Monte Carlo
variance reduction technique
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*  MCHIFI (Monte Carlo High Fidelity ) project has been organized for massively parallel computations on the
EUROfusion Marconi-Fusion HPC for the most urgent and computationally demanded fusion neutronics tasks.
* The MCHIFI project was founded in 2012 to use the IFERC-CSC Helios supercomputer in the framework of the F4E
Broader Approach (BA) to serve the ITER neutronics tasks.

* MCNPS tested on the FAE Broader Approach IFERC-CSC Helios: 2x8 Intel + McDeLicious tested on the EUROfusion HPC Marconi-Fusion with conventional
Sandy-bridge EP processors with 2.7 Hz and 64 GB RAM per node: partition (A3) based on INTEL Skylake with peak performance ~9.2 Pflops (2848
* Excellent scalability of MPI/OpenMP parallel runs of MCNP5 code up to 1024 nodes). Each node is equipped with 2x24-cores Intel Xeon 8160 CPU (Skylake)

cores in analogue runs, no variance reduction. at 2.10 GHz and 192 GB of RAM per node.
* Speed-up equals ~450 on 512 cores, and ~850 of speed-up for 1024 cores. + Speed-up MPI-parallel performance has been measured and presented in
* OpenMP/MPI hybrid, the satisfactory speed-up of more than 2500 on 4096 Figure 2 for the McDeLicious code for IFMIF-DONES radiation deep-
cores was achieved for not-biased MCNP5 calculations, as it is illustrated in penetration shielding tasks with variance reduction.
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Figure 1. The MCNP5 speed-up on IFERC-CSC Helios supercomputer. Figure 2. The speed-up of McDeLicious code on Marconi-Fusion HPC.
The optimal number of CPUs used in MCNP5/6 parallel calculations is dependent on complexity of the model. To improve the statistical errors of the MCNP5
results we are using the ADVANTG approach and the recently developed at KIT On-The-Fly (OTF) Monte Carlo variance reduction technique with dynamic
Weight Window upper bounds, see Ref. [Yu Zheng, Y. Qiu, “Improvements of the on-the-fly MC variance reduction technique with dynamic WW upper bounds,”
Nuclear Fusion 62 (2022) 086036, https://doi.org/10.1088/1741-4326/ac75fc]
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 OTF-GVR: On-The-Fly Global Variance Reduction

Vs
\\_/
=

* Weight windows mesh (WWM) is a common method used for MC shielding
calculation. Anal Global flux
. . ogue run
» Performs “on-the-fly” iterations to get a global flux map and a weight-window . Weight window » Hee »
mesh.

» Using novel dynamic WW upper bound method to solve the neutron streaming
and “long-history” particles

» Comparing with ADVANTG, OTF-GVR shows enhancement by a factor of 20

n(7) ~ m(F)w(r)

L+
GVR run with
WWwWM

OTF-GVR:

_ = — — _ = — — . ) .
w(r) = ¢( T )/max(¢( r)) » w(r)=cx¢(r)/max(¢(r)) On-the-fly Global weight window mesh generation
Definition of “c” to avoid “long-history” by limiting the splitting in the OTF run in Ref. [yu zheng, 107 T
Yuefeng Qiu, et al., “An improved on-the-fly global variance reduction technique by automatically updating weight window values 0.91
_ for Monte Carlo shielding calculation”, Fusion Eng. Des. 147 (2019) 111238, https://doi.org/10.1016/j.fusengdes.2019.06.011 ] ;: 0.8
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’ Ref.: [ Yuzheng et al 2022 Nucl. Fusion 62 0860386,
Analogue run ADVANTG WWM run OTE-GVR run https://doi.org/10.1088/1741-4326/ac75fc |
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