
■ SCITAS

GPU porting of ASCOT5 code for Monte Carlo simulations in
fusion plasmas

M. Peybernes, G. Fourestey, S. Äkäslompolo, K. Särkimäki, F. Spiga

5th Fusion HPC Workshop

■ SCITAS

EUROfusion Advanced Computing Hubs

EUROfusion E-TASC – Theory and Advanced Simulation
Coordination between:

- 14 TSVV (Theory, Simulation, Validation and
Verification) projects

- 5 ACH (Advanced computing Hubs)

In particular, 3 HPC ACHs were created in order to help
building power plants through numerical simulations

- Extension of HLST (Roman Hatsky/IPP)
- Develop efficient, reliable tools
- Modernize and industrialize research codes

In order to gain insight and predict fusion experiments
(ITER, JT60-SA, DEMO…)

HPC

Data Management

Code Integration

HPC

HPC

■ SCITAS

How to transition towards GPU codes
Plasma simulation codes are research codes:

■ mostly CPU-only,
■ written in C,C++ and Fortran,
■ MPI and/or OpenMP,
■ under active development by physicists,

mathematicians, etc…
■ main objective: GPU porting

General porting rules:

■ least modifications of the code/no rewrite
■ “maximum” performance
■ portability/no specific target

3 approaches:

Library encapsulation (e.g. Kokkos, PETSc, AmgX,
BLAS/Lapack…)

Cuda/ROCm

Pragma directives (OpenMP offload / OpenACC)

■ GRILLIX

■ GyselaX

■ ORB5

■ Soledge3X

■ ASCOT5

■ CAS3D

■ FELTOR

■ GBS

■ GENE

■ SCITAS

■ Outline
➢ ASCOT5: particle orbit-following code

➢ MPI + OpenMP CPU algorithm

➢ GPU porting strategy

➢ Benchmarks

➢ Profiling

➢ Conclusion

4

ASCOT5 GPU porting

■ SCITAS

▪ ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices
▪ The code uses the Monte Carlo method to solve the distribution of particles by following their

trajectories.
• The evolution of the distribution function for a test particle species a is described by the

Fokker-Planck equation

and approximated by the Langevin equation for a large number of markers that represent the
distributed function:

▪ The particles undergo collisions with a static Maxwellian
background plasma

▪ The detailed magnetic fields and the first wall can be
fully 3D

▪ MPI + OpenMP (task-based) and highly vectorized

ASCOT5

■ SCITAS

■ CPU: MPI - OpenMP - Vectorized implementation:

○ The time evolutions of each particle are independent from each
other

○ One + two levels of parallelism:

○ MPI: Particles distributed among tasks, fields replicated

○ OpenMP: queue based approach

○ highly vectorized using the SIMD, originally developed for
KNL manycore systems as target

○ to enable multithreading, a number of worker threads, each
operating on a single set of NSIMD arrays, are launched and
allowed to perform their simulation independently

○ swapping mechanism

■ after each iteration, particles that have reached their end
condition are stored in an array for completed particles

■ a fresh particle is retrieved from a queue to continue
simulation in the particular slot in the NSIMD arrays

6

ASCOT5 CPU version

■ SCITAS

■ GPU porting strategy
➢ Maintain a single version of the code

➢ Ensure code portability and readability

➢ Generic pragma for OpenMP/OpenACC

7

ASCOT5 GPU version

#ifndef gpu_commands
#define gpu_commands
/**
 * @brief Applies parallel execution to loops
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_PARALLEL_LOOP_ALL_LEVELS \

str_pragma(omp target teams distribute parallel for simd)
#elif defined(GPU) && defined(_OPENACC)
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(acc parallel loop)
#else
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(omp simd)
#endif

/**
 * @brief Maps variables to the target device
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_MAP_TO_DEVICE(...) \

str_pragma(omp target enter data map (to: __VA_ARGS__))
#elif defined(GPU) && defined(_OPENACC)
#define GPU_MAP_TO_DEVICE(...) str_pragma(acc enter data copyin
(__VA_ARGS__))
#else
#define GPU_MAP_TO_DEVICE(...)
#endif
............

#endif
#endif

 GPU_LOOP_ALL_LEVELS
 for(i = 0; i < n_queue_size; i++) {
 if(p->running[i]) {
 posxyz[0] = posxyz0[0] + pxyz[0] * h[i] / (2.0 * gamma *
mass);
 posxyz[1] = posxyz0[1] + pxyz[1] * h[i] / (2.0 * gamma *
mass);
 posxyz[2] = posxyz0[2] + pxyz[2] * h[i] / (2.0 * gamma *
mass);
 }
 GPU_END_LOOP_ALL_LEVELS

■ SCITAS

■ First implementation History-Based:
○ parallelism is expressed at a high level, emphasizing the independence of individual particles, allowing for

concurrent execution of their respective histories from birth to death

○ each GPU processing unit is used to deal with the entire history of one or more particles until all of the
particles have reached their end condition

○ this parallelism is implemented through a single monolithic GPU kernel

8

ASCOT5 GPU version

■ SCITAS

■ The original implementation is not GPU-friendly:
○ one very large kernel
○ events depend on the previous event

■ Implement a new version by splitting the initial kernel:
○ Parallelize over events instead of particles
○ small kernels independent of each other

9

ASCOT5 GPU version

■ SCITAS

■ Implement a new version by splitting the initial kernel:
○ parallelize over events instead of particles
○ small kernels independent of each other
○ pack particles

ASCOT5 GPU version

■ SCITAS

■ Benchmark:
○ Collisional full-orbit simulation of prompt-losses of fusion alpha particles
○ 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
○ 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Leonardo: A100, nvhpc/23.1
○ Comparison of three GPU implementations on GPU A100

■ Event-based packing algorithm is most efficient in all cases
■ Impact of Packing:

● test_loadBalanced: Minimal impact due to majority of particles reaching end of simulation
● test_loadUnbalanced: Significant impact with speedup of up to 1.41 compared to history-based

algorithm and up to 1.22 compared to event-based one.

11

Benchmarks

Comparison of the 3 particle-following GPU implementations - 1
Millions markers - 1 A100

Comparison of the 3 particle-following GPU implementations -
10 Millions markers - 4 A100

■ SCITAS

■ Lower Local Memory Use: Event-based packing uses multiple smaller kernels, reducing local memory demands
versus the history-based version.

■ Efficient Data Transfer: Minimal data transfer overhead as all kernels run on the GPU.
■ Optimized Memory Access: Contiguous, coalesced memory access through packing enhances efficiency.
■ Reduced Loop Bounds: Through packing step, dynamic loop bounds improve runtime performance, with only

~30% particles active per timestep.

12

Profiling Nsys

■ SCITAS

■ HistoryBased

13

Profiling Nsight-Compute

■ EventBased

■ SCITAS

■ 10M markers Benchmark:
○ Collisional full-orbit simulation of prompt-losses of fusion alpha particles
○ 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
○ 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Jed: 2x Platinum 8360Y, intel/2021.6.0
○ Leonardo: A100, nvhpc/23.1
○ NVIDIA Grace Hopper Superchip engineering sample early access courtesy of NVIDIA
○ Intel Ponte-Vecchio 600W (2 tiles) engineering sample early access courtesy of INTEL

14

Benchmarks

■ SCITAS
15

Profiling

■ EventBased version:
○ kernels mostly memory-bound
○ multiple branch divergences in end_condition kernel

involving lower Memory SOL due to thread divergence

Main kernels %

move_particle 64.8

diagnostics 9.6

end_condition 6.5

collisions 5.8

copy_particles_structures 5.5

sorting < 0.1

packing < 0.1

TABLE I. RELATIVE WEIGHTS OF THE DIFFERENT STEPS OF THE SIMULATION ON
A100. % VALUES ARE AVERAGED SIMULATING 1 MILLION PARTICLES

WITH THE ASCOT5 EVENT-BASED-PACKING ALGORITHM

Main kernels Memory
SOL (%)

Compute
SOL (%)

move_particle 68 30

diagnostics 80 26

end_condition 36 12

collisions 40 56

TABLE II. TEST_LOADBALANCED, SPEED OF LIGHT - 1 MILLION PARTICLES WITH
THE ASCOT5 EVENT-BASED-PACKING ALGORITHM

■ SCITAS

■ Roofline

16

Profiling

■ SCITAS
17

Conclusion

● Successful GPU Transition: ASCOT5 was efficiently ported from CPU to GPU
using a directive-based strategy, ensuring code consistency.

● Optimized Algorithms: Three strategies were tested, with event-based-packing
achieving the best performance due to improved load balancing and reduced
thread divergence.

● Significant Speedup: Event-based-packing on H100-96GB shows up to 6x
speedup over a dual Intel Xeon CPU node.

● Future Work: Conduct new tests incorporating enhanced physical models.

