\

r
J =1

=\

)
~

Z

]
A,
S

/
{

= SCITAS

-

GPU porting of ASCOT5 code for Monte Carlo simulations in
fusion plasmas

M. Peybernes, G. Fourestey, S. Akdslompolo, K. Sarkimaki, F. Spiga

5% Fusion HPC Workshop

©) eurofusion EPFL Al €2
- " AVIDIA.

=PrL
/;?\\

_/

EUROfusion Advanced Computing Hubs

=
d

7,
&\/’

EUROfusion E-TASC - Theory and Advanced Simulation 77
Coordination between: =

- 14 TSVV(Theory, Simulation, Validation and
Verification) projects
- B ACH(Advanced computing Hubs)

) MAX PLANCK INSTITUTE
FOR PLASMA PHYSICS

HPC

7 2
oh

Data Management

In particular, 3 HPC ACHs were created in order to help
building power plants through numerical simulations
- Extension of HLST (Roman Hatsky/IPP)
- Develop efficient, reliable tools -
- Modernize and industrialize research codes ﬂHE:F L

In order to gain insight and predict fusion experiments
(ITER, JTB0-SA, DEMO...)

Code Integration

JFPILIT

v
INSTYTUT FIZYKI PLAZMY | LASEROWEJ MIKROSYNTEZY
— ,,‘

ientales
Barcelona
Supercomputing
Center
Centro Nacional de Supercomputacién
= SCITAS

HPC

E;FL How to transition towards GPU codes
@)

N\—% . .
\= Plasma simulation codes are research codes:

2) MAX PLANCK INSTITUTE

| mOSt|y CPU-Only, [] ’ FOR PLASMA PHYSICS
m writtenin C,C++and Fortran, s
= MPland/or OpenMP, . J
m under active development by physicists, m ORB5 EPFL VY, () mxzsneimenrors
mathematicians, etc... N
. . . . []
m main objective: GPU porting _
General porting rules: -
m least modifications of the code/no rewrite = FORPLASA PRISICS |
m ‘maximum’ performance -
m portability/no specific target
m =PrL

3 approaches:

F -
__

#7)\ MAX PLANCK INSTITUTE
¥4/) FOR PLASMA PHYSICS

= SCITAS

. ASCOT5 GPU porting
//

\’)

=

m Outline
> ASCOTS5: particle orbit-following code

MPI + OpenMP CPU algorithm
GPU porting strategy
Benchmarks

Profiling

Y YV Y VY ¥

Conclusion

= SCITAS

Aalto Universi

ity

EPFL ASCOT5 A

= ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices

= The code uses the Monte Carlo method to solve the distribution of particles by following their
trajectories.

* The evolution of the distribution function for a test particle species ais described by the
Fokker-Planck equation 5
ot

and approximated by the Langevin equatlon for alarge number of markers that represent the

distributed function:
dz = [z + a(z,t)| dt + o (z,t) - AW

+v-Vf,+ (E-I-VXB vfa_z = Vg [aabfa v'(Dabfa)]

background plasma
= The detailed magnetic fields and the first wall can be
fully 3D

= MPI + OpenMP (task-based) and highly vectorized

= SCITAS

m
v
1

)

=

)\
)]

~

-y

7
'

ASCOT5 CPU version

m CPU: MPI - OpenMP - Vectorized implementation:

= SCITAS

The time evolutions of each particle are independent from each
other

One + two levels of parallelism:
MPI: Particles distributed among tasks, fields replicated
OpenMP: queue based approach

highly vectorized using the SIMD, originally developed for
KNL manycore systems as target

to enable multithreading, a number of worker threads, each
operating on a single set of N - arrays, are launched and
allowed to perform their simulation independently

swapping mechanism

m after each iteration, particles that have reached their end
condition are stored in an array for completed particles

m a fresh particle is retrieved from a queue to continue

simulation in the particular slot in the N, arrays

A

Aalto University

Algo

rithm 1: CPU multithread vectorized algorithm

initialization;
#pragma omp parallel
while particles are alive in packyy,,,,, do

end

#pragma omp simd

for particles € packyg,,,,, do
‘ move_particle;

end

#pragma omp simd

for particles € packng,,,, do
‘ collisions;

end

#pragma omp simd

for particles € packny,,,,, do
| end_condition;

end

#pragma omp simd

for particles € packny,,,,, do
| diagnostics;

end

for particles € packn,,,,,, do

if particle reached end condition then
| store particle and replace it by new one
end
end

cPFL ASCOT5 GPU version
)

\;@» m GPU porting strategy
> Maintain a single version of the code

> Ensure code portability and readability
> Generic pragma for OpenMP/OpenACC

#ifndef gpu_commands
#define gpu_commands

/ * *

* Q@brief Applies parallel execution to loops

*/
#if defined(GPU) && defined (OPENMP)
#define GPU_PARALLEL_LOOP_ALL_LEVELS\

str_pragma omp target teams distribute parallel for simd

#elif defined(GPU) && defined (OPENACC)
#define GPU_PARALLEL LOOP_ALL_ LEVELSstr_pragma @cc parallel loop
#else
#define GPU_PARALLEL LOOP_ALL LEVELSstr_pragma ()
#endif

/‘k*
* Q@brief Maps variables to the target device
*/

#if defined(GPU) && defined (OPENMP)

#define GPU_MAP_TO_DEVICHK(...) \

str_pragma (omp target enter data map(to: _ VA ARGS_))
#elif defined(GPU) && defined (OPENACC)
#define GPU_MAP_TO_DEVICE(...) str_pragma@cc enter data copyin
(__VA ARGS_))
#else
#define GPU_MAP_TO_DEVICK...)
#endif
#endif

= SCITAS #endif

A

Aalto University

GPU_LOOP_ALL_LEVELS

for(i = 0; i < n_queue_size;
if (p->running[i]) {

posxyz[0] = posxyz0[0]

mass) ;
posxyz[l] = posxyz0[1l]

mass) ;
posxyz[2] = posxyz0[2]

mass) ;

}
GPU_END_LOOP_ALL_LEVELS

it++) |
+ pxyz[0]
+ pxyz[1]

+ pxyz[2]

*

*

*

hli]

hli]

hli]

/

/

/

(2.0 * gamma *
(2.0 * gamma *

(2.0 * gamma *

=P=L ASCOT5 GPU version A

/, Q\\ Aalto University
\\\))
=

m First implementation History-Based:
o parallelism is expressed at a high level, emphasizing the independence of individual particles, allowing for

concurrent execution of their respective histories from birth to death

o each GPU processing unit is used to deal with the entire history of one or more particles until all of the
particles have reached their end condition

o this parallelism is implemented through a single monolithic GPU kernel

Algorithm 2: GPU algorithm - History-based

initialization;
#pragma acc parallel loop
for all particles € {1...N;o} do
while particle is alive do
move_particle;
collisions;
end_condition;
diagnostics;
end
end

= SCITAS

cPFL ASCOT5 GPU version

72
“\i\;/)) m Theoriginal implementation is not GPU-friendly:

o one very large kernel
o events dependon the previous event

m Implement a new version by splitting the initial kernel:

o Parallelize over events instead of particles
o small kernels independent of each other

Algorithm 2: GPU algorithm - History-based
initialization;
#pragma acc parallel loop
for all particles € {1...Nyo:} do
while particle is alive do
move_particle;
collisions;
end_condition;
diagnostics;
end
end

= SCITAS

A

Aalto University

Algorithm 3: GPU algorithm - Event-based

initialization;
while number of particles alive > 0 do

#pragma acc parallel loop
for all particles € {1...Ny,;} do
if particle alive then
| move_particle;
end
end
#pragma acc parallel loop
for all particles € {1...Ny,;} do
if particle alive then
‘ collisions;
end
end
#pragma acc parallel loop
for all particles € {1...Nyo1} do
if particle alive then
‘ end_condition;
end
end
#pragma acc parallel loop
for all particles € {1...Nyo} do
if particle alive then
| diagnostics;
end
end

end

cPFL ASCOT5 GPU version

2

\\\i\;/)) m Implement a new version by splitting the initial kernel:
— o parallelize over events instead of particles
o small kernels independent of each other
o pack particles

A

Aalto University

Algorithm 2: GPU algorithm - History-based Algorithm 3: GPU algorithm - Event-based

Algorithm 4: GPU algorithm - Event-based - packing

initialization;
while number of particles alive > 0 do
#pragma acc parallel loop
for all particles € {1...Ny,,} do
if particle alive then
| move_particle;

initialization;
#pragma acc parallel loop
for all particles € {1...No1} do
while particle is alive do
move_particle;

collisions; end
end_condition; end
diagnostics; #pragma acc parallel loop
end for all particles € {1...Ny,;} do
end if particle alive then
‘ collisions;
end
end

#pragma acc parallel loop
for all particles € {1...Nyo1} do
if particle alive then
\ end_condition;
end
end
#pragma acc parallel loop
for all particles € {1...Nyo,} do
if particle alive then
‘ diagnostics;
end
end

= SCITAS end

initialization;
Npack + Niots

while number of particles alive > 0 do

#pragma acc parallel loop

for packed particles still alive
| move_particle;

end

#pragma acc parallel loop

for packed particles still alive
| collisions;

end

#pragma acc parallel loop

for packed particles still alive
| end_condition;

end

#pragma acc parallel loop

for packed particles still alive
| diagnostics;

end

pack particles;
Npack < Nrunnings
end

end

e{1.

e {1..

€ {1...

€ {1...

Npacr } do

Npack} do

Npack } do

Npack} do

if (Npack — Nrunning > @ Niot) then

EPFL Benchmarks A

(f%\ alto University
Q\J}) m Benchmark:

=7

Time To Solution [s]

= SCITAS

o Collisional full-orbit simulation of prompt-losses of fusion alpha particles

o 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
o 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
o Leonardo: A100, nvhpc/23.1
0 Comparison of three GPU implementations on GPU A100
m Event-based packing algorithm is most efficient in all cases
m Impact of Packing:
e test loadBalanced: Minimal impact due to majority of particles reaching end of simulation
e test loadUnbalanced: Significant impact with speedup of up to 1.41 compared to history-based
algorithm and up to 1.22 compared to event-based one.
M History-Based M Event-Based Event-Based-Packing B History-Based M Event-Based Event-Based-Packing

1000.0 2500.0

2000.0
750.0

1500.0
500.0
1000.0

250.0

Time To Solution [s]

500.0

0.0 0.0

test_loadBalanced test_loadUnbalanced test_loadBalanced test_loadUnbalanced
Comparison of the 3 particle-following GPU implementations - 1 Comparison of the 3 particle-following GPU implementations -
Millions markers - 1 A100 10 Millions markers - 4 A100

11

ePFL Profiling Nsys A
A

‘\\E‘f/» m Lower Local Memory Use: Event-based packing uses multiple smaller kernels, reducing local memory demands
versus the history-based version.
m Efficient Data Transfer: Minimal data transfer overhead as all kernels run on the GPU.
Optimized Memory Access: Contiguous, coalesced memory access through packing enhances efficiency.
m Reduced Loop Bounds: Through packing step, dynamic loop bounds improve runtime performance, with only
~30% particles active per timestep.

12

= SCITAS

Profiling Nsight-Compute

m HistoryBased

m EventBased

Aalto University
w GPU Speed Of Light Throughput

GPU Throughput Chart - O
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the show the ghput for each individual sub-metric of
Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart

Compute (SM) Throughput [%] 18.22 Duration [usecond]

Memory Throughput [%] 37.37 Elapsed Cycles [cycle]

L1/TEX Cache Throughput [%] 28.18 SM Active Cycles [cycle]

L2 Cache Throughput [%] 49.50 SM Frequency [cycle/nsecond] 119
DRAM Throughput [%] 0.00 DRAM Frequency [cycle/nsecond] 1.54

|~ Latency Issue

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak typically indicate latency issues.
Look at and for potential reasons

(©]

@ Roofiine Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and 0% of its fp64 peak performance. See the
analysis.

for more details on roofline

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0

v GPU Speed Of Light Throughput

All Y D

show the put for each individual sub-metric of

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the
Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.
Compute (SM) Throughput [%] 31.93 Duration [msecond] 239
Memory Throughput [%] 59.03 Elapsed Cycles [cycle] 2,923,391
L1/TEX Cache Throughput [%] 36.22 SM Active Cycles [cycle] 2,893240.70
L2 Cache Throughput [%] 74.85 SM Frequency [cycle/nsecond] 1.22
DRAM Throughput [%] 59.03 DRAM Frequency [cycle/nsecond] 1.57

|~ Latency Issue

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak typically indicate latency issues
Look at and for potential reasons.

(-}
The following table lists the metrics that are key performance indicators:
Metric Name

Value Guidance
gpu_compute_memory_throughput.avg.pct_of_peak_sustained_elapsed 59.0295 59.030 < 80.000

sm_throughput.avg.pet_of_peak_sustained_elapsed 31.9341 31.934<80.000

FP64/32 Utilization

= The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved close to 0% of this device's fp32 peak performance and 23% of its fp64 peak performance. If
Est. Speedup: 16.09% determines that this kernel is fp64 bound, consider using 32-bit precision floating point operations to improve its performance. See the for more details on roofline analysis.

GPU Throughput

Compute (SM) [%]

Memory [%]

1
00 50.0
Speed Of Light (SOL) [%]

EPFL Benchmarks A

N

= SCITAS

Aalto University

10M markers Benchmark:

(@)

O O O O O O

Collisional full-orbit simulation of prompt-losses of fusion alpha particles

2D wall; ITER-like but circular equilibrium interpolated with cubic splines

2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
Jed: 2x Platinum 8360Y, intel/2021.6.0

Leonardo: A100, nvhpc/23.1

Intel Ponte-Vecchio 600W (2 tiles) engineering sample early access courtesy of INTEL

B Jed@EPFL (Icelake 2x36 cores) [l Leonardo - A100 - (Event-Based) GH200 (Event-Based) [l Ponte Vecchio (Event based)
25000
20418.1
20000
@ 15000
c
8
5
)
%
e 10039.1
E 10000
=4
4685 4985.0
5000
3216.4
2298 2460.5
1627.4
1132 874.0 1264.3
. 605 4640 329 627478 215
0 -_..-_—_.____
il 2 4 8 16 32
Number of nodes or A100 or H100 or PVC 14

ePFL Profiling

(@)

m EventBased version:

o kernels mostly memory-bound

o multiple branch divergences in end_condition kernel
involving lower Memory SOL due to thread divergence

Main kernels

move_particle 64.8
diagnostics 9.6
end_condition 6.5
collisions 5.8
copy_particles_structures 5.5
sorting <0.1

packing <0.1

TABLE LRELATIVE WEIGHTS OF THE DIFFERENT STEPS OF THE SIMULATION ON
A100. % VALUES ARE AVERAGED SIMULATING 1 MILLION PARTICLES
WitH THE AscoT5 EVENT-BASED-PACKING ALGORITHM

= SCITAS

Main kernels %g:;z ggzp(gj
move_particle 68 30
diagnostics 80 26
end_condition 36 12
collisions 40 56

TABLE ILTEST_LOADBALANCED, SPEED OF LIGHT - 1 MILLION PARTICLES WITH

THE AscoT5 EVENT-BASED-PACKING ALGORITHM

A

Aalto University

15

ePFL Profiling A

/,j;S;\\ Aalto University
O

m Roofline

Floating Point Operations Roofline

=]

=)
=3
=3
o
8
8
=3
=3
1=
=

3
o
<
ik,
@
2
@«
g
2

a

1
Arithmetic Intensity [FLOP/byte]

16
= SCITAS

ePFL Conclusion A

/
78

= SCITAS

Aalto University

Successful GPU Transition: ASCOTS was efficiently ported from CPU to GPU
using a directive-based strategy, ensuring code consistency.

Optimized Algorithms: Three strategies were tested, with event-based-packing
achieving the best performance due to improved load balancing and reduced
thread divergence.

Significant Speedup: Event-based-packing on H100-96GB shows up to 6x
speedup over a dual Intel Xeon CPU node.

Future Work: Conduct new tests incorporating enhanced physical models.

