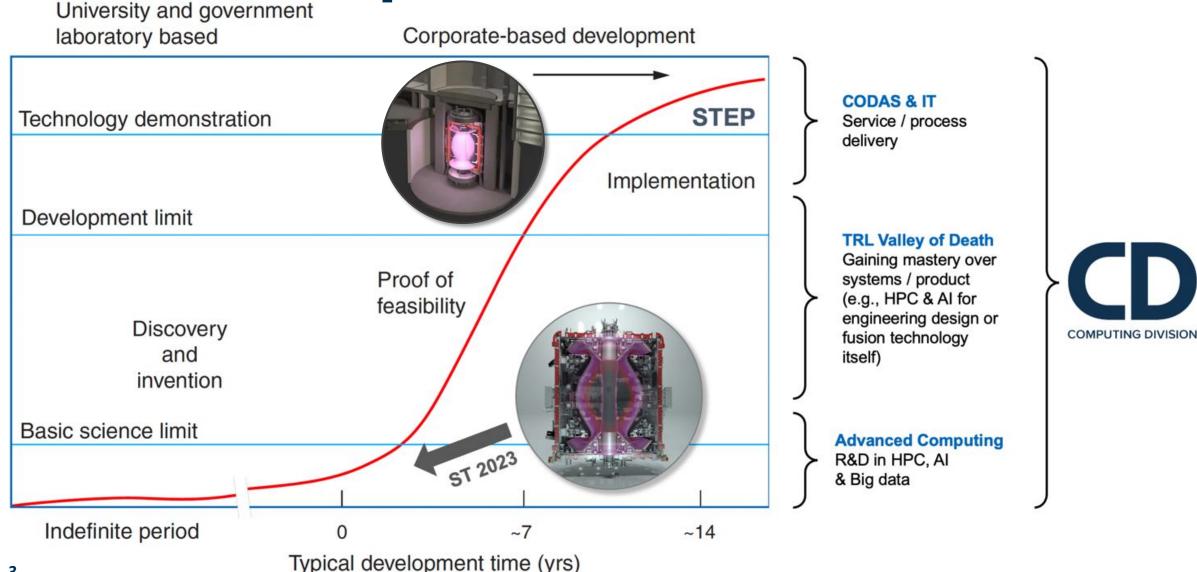

High Performance Multiphysics driven design for fusion systems

Prof. Andrew Davis, Head of Advanced Engineering Simulation, UKAEA

4th Fusion HPC Meeting BSC

MAST-Upgrade (UKAEA, Oxfordshire, UK) Radius: 1.5m Temperature: 15,000,000 degrees Celsius Power output: zero (negative)

Sun Radius: 696,000 km Temperature: 15,000,000 degrees Celsius Power output: 385 Million Exawatts (0.385 Octillion Watts)



ADVANCED ENCIMEERING JIMULATION

Kassel Lak

Challenge: catapulting fusion up the "S-curve" to help deliver Net Zero

NA.

UK Atomic Energy

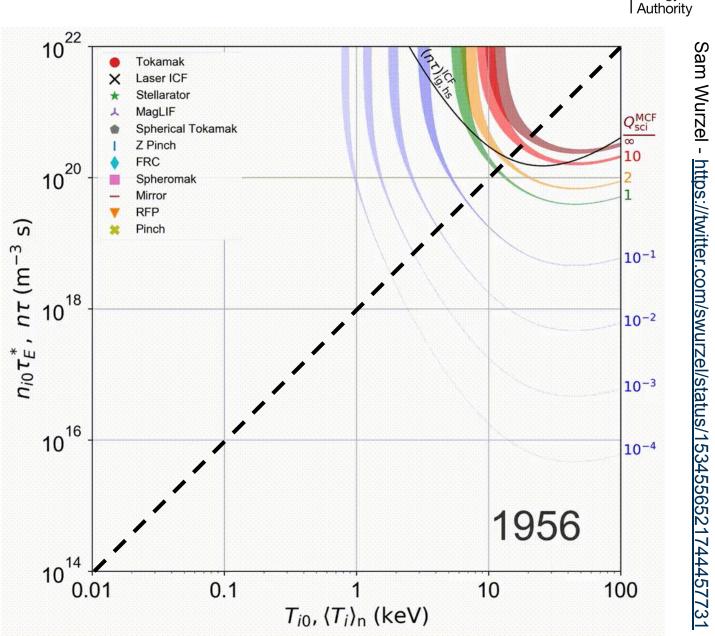
Authority

Technology maturity

Complete Physical Testing is too expensive

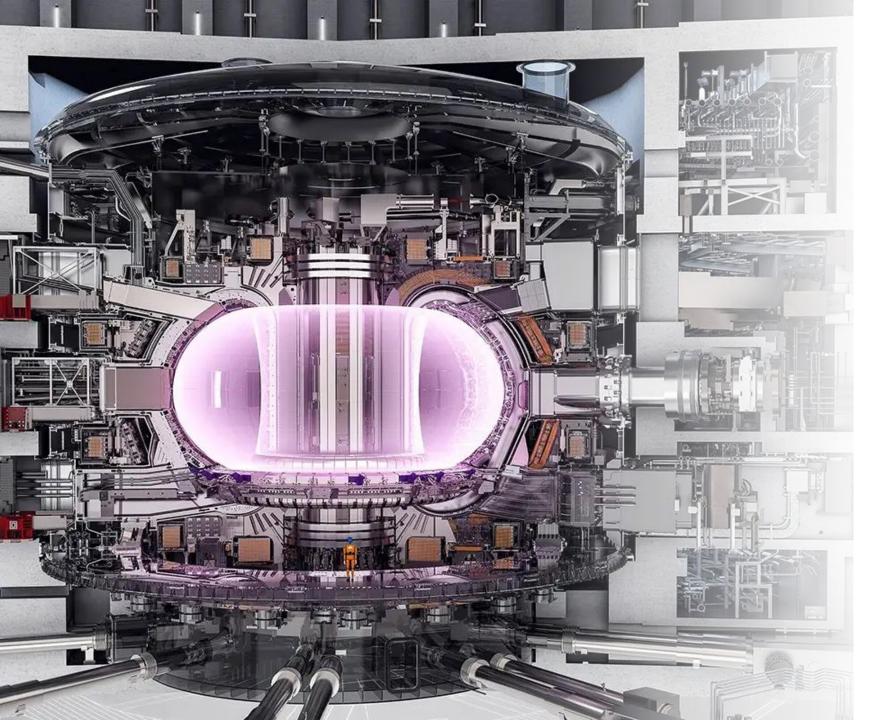
Fusion devices (like fission plants) are capital intensive

- ITER cost \$22B (FOAK)
- Fission plant \$6B
- SMR \$2B


Much of the cost is insurance/concrete; magnets are expensive, steel is expensive, many fusion materials have no large existing supply chains

Clearly, design by iteration eventually becomes too expensive at some point for tokamaks (device) cost scales as B²R³.

As we approach Q ~ 1 - \$\$\$\$\$


Realistic fusion environment difficult to achieve artificially, high radiation, high temperature, high magnetic field

4 OFFICIAL

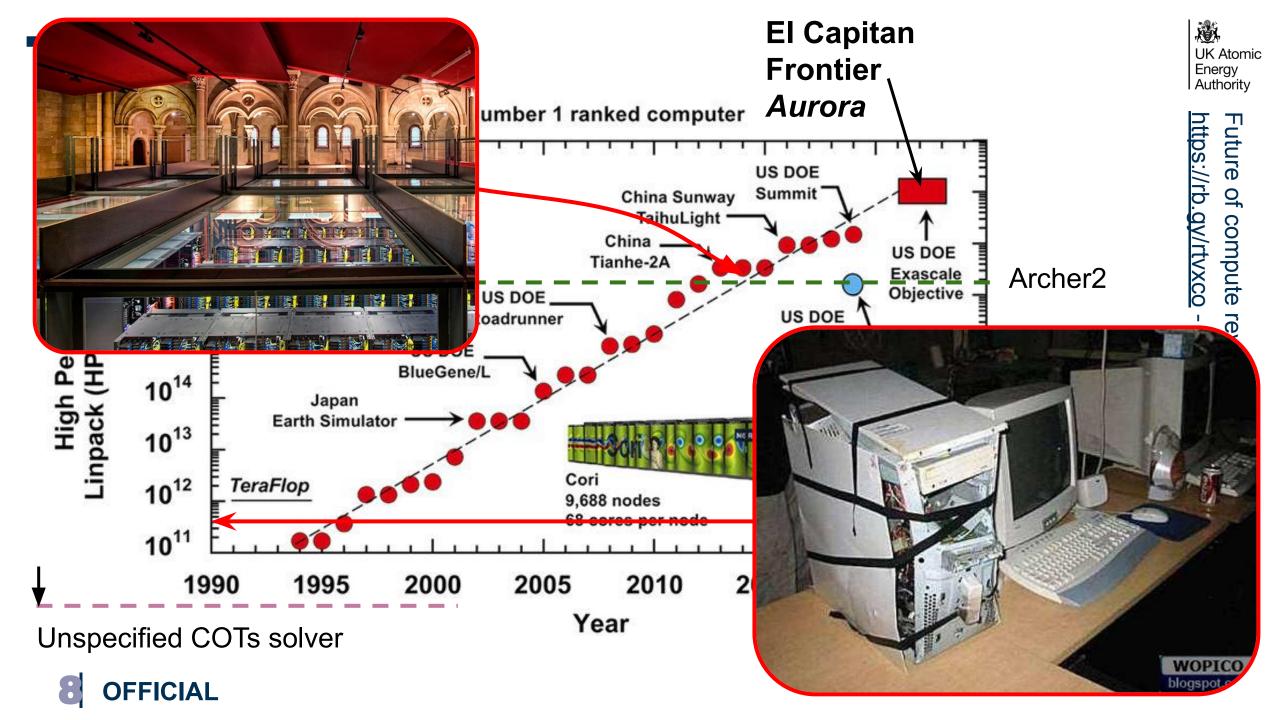
NA.

UK Atomic Energy

Simulation: Everything, everywhere, all at once...

- Radiation
- Electromagnetism
- Structural forces and Gravity
- Heat transport (conductivity, thermal hydraulics)
- **Chemical transport** (Diffusion, radio-nuclide transport through fluids)
- **Temporal coupling** transmutation, radiation induced embrittlement, fatigue, tribology/wear

Experiments *aren't* going to ride to the rescue?


- Traditionally we used a design-by-failure approach
 - tokamaks are getting too **expensive** for the trend to continue
 - there will **not** be enough of the **right** experiments to fully de-risk tokamaks pre-2050
- The normal regulatory approach is demonstrate safety through margins and design codes; both are determined either through experiment or through long and numerous demonstrations of robustness
- The only way to deliver a demonstration tokamak that has been de-risked relative to today is to replicate all physics *in silico*. This will require significant effort to advance state of the art simulation to the point where we can simulate a complete tokamak (i.e. not 'just' the plasma)

OFFICIAL

I do not fear computers, I fear the lack of them

Isaac Asimov

There are (at least two) Exascales

- The first is the exascale that Frontier achieved, with an R_{max} of 1.194 EFlop/s (out of a possible R_{peak} 1.679 EFlop/s.
 - Well done ORNL :)
 - This is great for non-memory bound problems, e.g. monte carlo which should be able to scale a long way
 - $\circ~$ LLMs are going to have a fun time
- The second is the exascale that Frontier didn't achieve with an HPCG result of 0.014 Eflops, i.e. 1 Linkpack Flop = 0.0083 HPCG flops
 - HPCG is a better reflection of how real world distributed memory bound problems behave, like those we have in engineering behave
- Current trends indicate that 1 HPCG GPU flop = 3 HPCG CPU flops (HBM2)
 - What does that mean for us?
 - High Productivity Computing

UK Atomic Energy Authority

I have anxiety around the AI trend

- I have anxiety around the AI trend, but not for the reasons that you might think
 - $\circ \quad \text{Not a luddite} \\$

OFFICIAL

- Not particularly conservative
- Not worried that AI is going to steal my job
- GPUs rose to prominence in HPC, not because of HPC and their end use case but due to the success of the home gaming market, they happened to be accidently useful for some applications
- Now we see the rise of AI applications, and push for reduced precision within those AI specific operations from 64->32->16->8 bit
 - If HPC becomes driven by the AI trend, and the GPU market responds, is it plausible to imagine reduced precision GPUs, with fewer CPUs per node, and reduced precision where will I run my code?!

A brief diversion....

TOP500 Linpack

11

OFFICIAL

rontier - HPE Cray EX235a, AMD Optimized 3rd		(PFlop/s)	(PFlop/s)	(kW)	-	Rank	Rank	System	Cores	(PFlop/s)	(TFlop/s)
ieneration EPYC 64C 2GHz, AMD optimized and lingshot-11, HPE IOE/SC/Oak Ridge National Laboratory Inited States	8,699,904	1,194.00	1,679.82	22,703		1	4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	16004.50
urora - HPE Cray EX - Intel Exascale Compute Blade, eon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel 10E/SC/Argonne National Laboratory Inited States	4,742,808	585.34	1,059.33	24,687		2	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	14054.00
i agle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IVIDIA H100, NVIDIA Infiniband NDR, Microsoft Aicrosoft Azure I nited States	1,123,200	561.20	846.84	}			5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	4586.95
upercomputer Fugaku - Supercomputer Fugaku, .64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu IIKEN Center for Computational Science apan	7,630,848	442.01	537.21	29,8/9		4	6	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	238.70	3113.94
UMI - HPE Cray EX235a, AMD Optimized 3rd Generation PYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE furoHPC/CSC inland	2,752,704	379.70	531.51	7,107	Ę	5	7	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	2925.75
10 10 10 10 10 10 10 10 10 10	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States percomputer Fugaku - Supercomputer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200percomputer Fugaku - Supercomputer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan7,630,848MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE2,752,704	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808585.34gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200561.20gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, Crosoft Azure ited States1,630,848442.01MI - HPE Cray EX235a, AMD Optimized 3rd Generation VC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE2,752,704379.70	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808585.341,059.33gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200561.20846.84percomputer Fugaku - Supercomputer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan7,630,848442.01537.21MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC2,752,704379.70531.51	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808585.341,059.3324,687gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200561.20846.84percomputer Fugaku - Supercomputer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan7,630,848442.01537.2129,87MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 20Hz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC2,752,704379.70531.517,107	rora- HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ux, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808585.341,059.3324,687gle- Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, TDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200561.20846.84gle- Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, TDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States7,630,848442.01537.2129.919gle- Microsoft Computer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan7,630,848442.01537.2129.919MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC2,752,704379.70531.517,107	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 1DIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States percomputer Fugaku - Supercomputer Fugaku, 4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu KEN Center for Computational Science pan MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.4GHz, Intel Data Center GPU ix, Slingshot-11, Intel IE/SC/Argonne National Laboratory ited States4,742,808585.341,059.3324,68721gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,123,200561.20846.8455gle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States1,059.3324,68746gercomputer Fugaku - Supercomputer Fugaku, KEN Center for Computational Science pan7,630,848442.01537.2129,84946MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 20Hz, AMD Instinct MI250X, Slingshot-11, HPE roHPC/CSC2,752,704379.70531.517,10757	rora - HPE Cray EX - Intel Exascale Compute Blade, on CPU Max 9470 52C 2.46Hz, Intel Data Center GPU x; Slingshot-11, Intel E/SC/Argone National Laboratory ited States 4,742,808 585.34 1,059.33 24,687 2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 20Hz, AMD Instinct MI250X, Slingshot-11, IPE Disc/SC/0ak Ridge National Laboratory United States gle - Microsoft NDv5, Xeon Platinum 8480C 48C 20Hz, IDIA H100, NVIDIA Infiniband NDR, Microsoft crosoft Azure ited States 1,123,200 561.20 846.84 5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 20Hz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC percomputer Fugaku - Supercomputer Fugaku, AFX 48C 2.20Hz, Tofu interconnect D, Fujitsu (EEN Center for Computational Science pan 7,630,848 442.01 537.21 29.87 4 6 Leonardo - BuilSequana XH2000, Xeon Platinum 8358 32C 2.60Hz, NVIDIA A100 SXM4 64 GB, Quad-rait NVIDIA HDR 100 Infiniband, EVIDEN EuroHPC/CINECA Italy MI - HPE Cray EX235a, AMD Optimized 3rd Generation ProHPC/CSC 2,752,704 379.70 531.51 7,107 5 7 Summit - IBM Power System AC922, IBM POWER9 22C 3.070Hz, NVIDIA A100 SIMe 40010, Dual-rail Mellanox EDR Infiniband, IBM	index 2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 642 20Hz, AMD Instinct MI250X, Stingshot-11, HPE (SC/Argone National Laboratory ited States 4,742,808 585.34 1,059.33 24,687 2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 642 20Hz, AMD Instinct MI250X, Stingshot-11, HPE DDC/S/C/ADR Ridge National Laboratory United States 8,699,904 gle - Microsoft NDv5, Xeon Platinum 8480C 482 20Hz, rorsoft Azure ited States 1,123,200 561.20 846.84 5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 642 20Hz, AMD Instinct MI250X, Stingshot-11, HPE EuroHPC/CSC Finland 2,752,704 360,848 442.01 537.21 29.87 6 Leonardo - Bull/Sequana XH2000, Xeon Platinum 8358 32C 2.60Hz, NVIDIA A100 SXM6 46 GB, Quad-rail NVIDIA HOR 100 Infiniband, EVIDEN EuroHPC/CINECA Italy 1,824,768 MI - HPE Cray EX235a, AMD Optimized 3rd Generation proHPC/CSC und 2,752,704 379,70 531.51 7,107 5 Summit - IBM Power System AC922, IBM POWER9 22C 3.070Hz, NVIDIA Voita 6V100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory 2,414,592	2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, IHE EXSC/Argonne National Laboratory lited States 4,742,808 585.34 1,059.33 24,687 2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, IHPE DDE/SC/Oak Ridge National Laboratory United States 8,699,904 1,194.00 gle - Microsoft NDv5, Xeon Platinum 8480C 48C 26Hz, IDIA H100, NVIDIA Infiniband NDR, Microsoft resoft Azure ited States 1 5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE DDE/SC/Oak Ridge National Laboratory United States 37.70 27.52,704 37.70 8 4 5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Fintand 1.824,768 37.70 8 442.01 537.21 29.37 4 6 Leonardo - BullSequana XH2000, Xeon Platinum 8358 S02 2.6Hz, XVDIA A100 SXM 64 Ge, Quad-rait NVDIA HDR 100 Infiniband, EVIDEN EuroHPC/CINECA Italy 1.824,768 38.70 MI - HPE Cray EX235a, AMD Optimized 3rd Generation YC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE Infiniband 27.70 5 Summit - IBM Power System AC922, IBM POWER9 22C 3.070Hz, NVDIA VIDIA VIDIA VIDIA W126 GV100, Dual-rait Mellanox EDR Infiniband, IBM DDE/SC/Osk Ridge National Laboratory 2.414.59 1.846.04

Ш

Top500 HPCG

Look at the ratio of HPCG/Linpack

HOME > HPC > Is This The End Of The Line For NEC Vector Supercomputers?

IS THIS THE END OF THE LINE FOR NEC VECTOR SUPERCOMPUTERS?

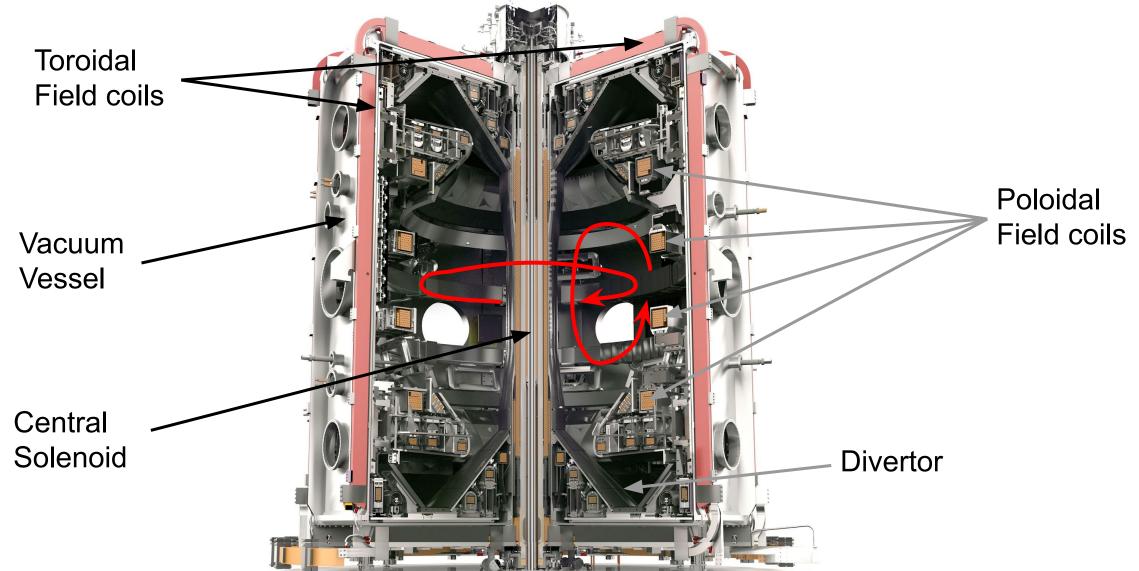
UK Atomic Energy

March 23, 2023 Timothy Prickett Morgan

Matsuoka said in a tweet. "This could be the final nail in the coffin for their SX vector processors history. At 6.8 TB/sec mem BW target, MI300 would have buried them already in 2023... Not just MI300 but also the

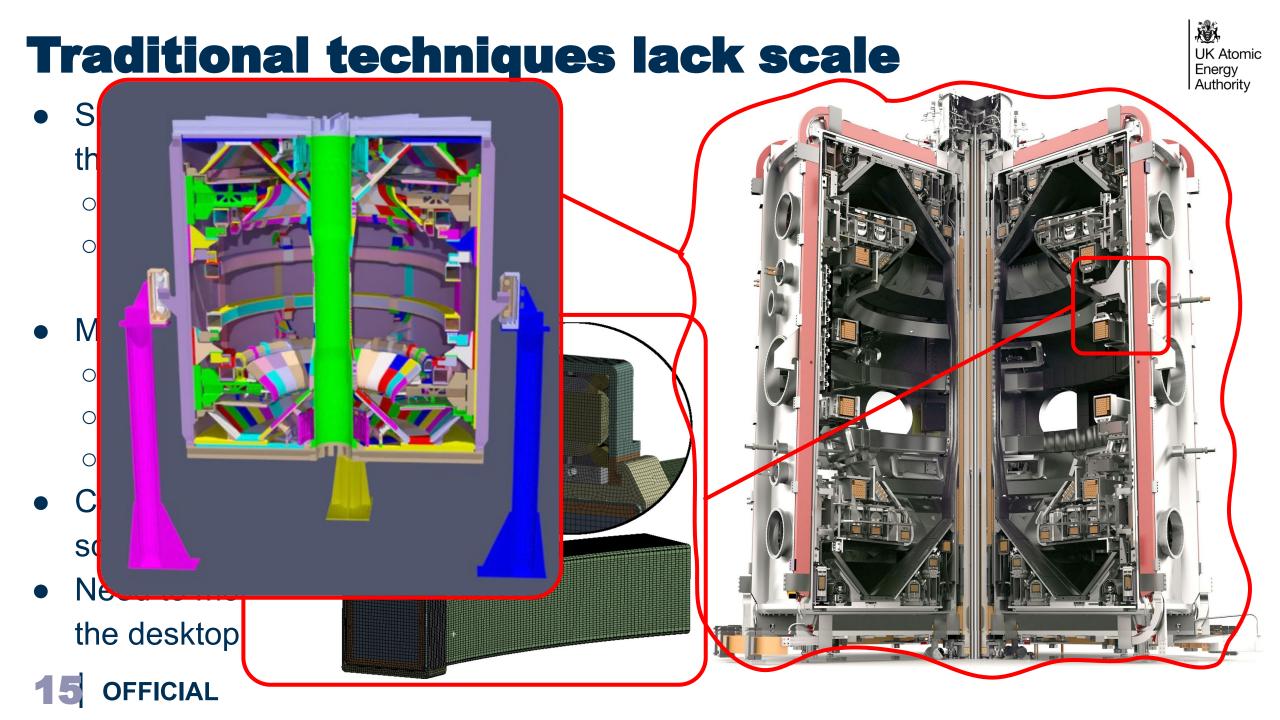
"I have consulted with our business teams, and they have indicated that although NEC is discontinuing efforts to develop low-power consumption accelerators with Japan's New Energy and Industrial Technology Development Organization's (NEDO) Green Innovation Fund, NEC is continuing its High Performance Computing business, including the NEC SX-Aurora TSUBASA."

I had never heard of the NEC Vector Engine - have you?



AND NOW FOR SOMETHING COMPLETELY DIFFERENT

13


Map of a Tokamak

×

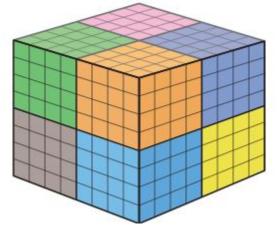
UK Atomic Energy Authority

Large scale multiphysics

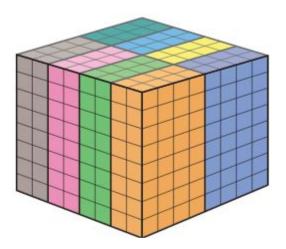
- If we are to fully simulate complete systems, need scalable coupled framework, it must cover:
 - Computational Solid Mechanics
 - Including dynamic contact
 - fracture mechanics
 - Micro-mechanics?
 - Computational Chemistry
 - DFT, Damage
 - Computational Electromagnetics
 - Computational Fluid Dynamics
 - Computational Radiation Transport
- Massively scalable
 100,000's of CPUs
- Exascale gazing (considering support for GPU)

• Heat Transfer

- Microstructure (phase field, grains)
- Diffusion (and reaction) for tritium transport


UK Atomic Energy Authority

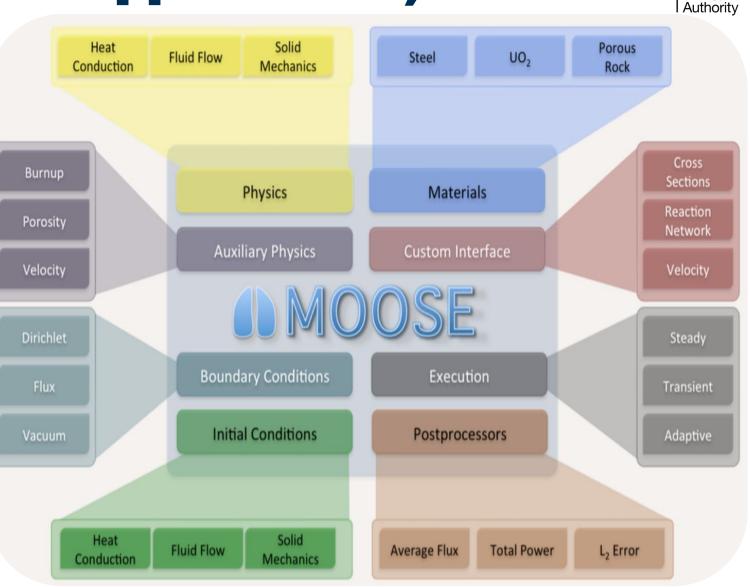
We are trying to provide a scalable multi-physics software framework


- We need to perform efficient multiphysics simulations
 - Experimenting with tightly coupled framework rather than federated model
 - This means we take a more *holistic* view of how we stick different codes together
 - It may be the case that taking the best/fastest physics packages and sticking them all together does not lead to the most scalable solution
 - communication of mesh or solutions could begin to dominate

FFICIAL

- for massively decomposed problems (where we need to be for performance)
- Time stepping between fast/slow physics may dominate

Ideal partitioning for a CFD problem



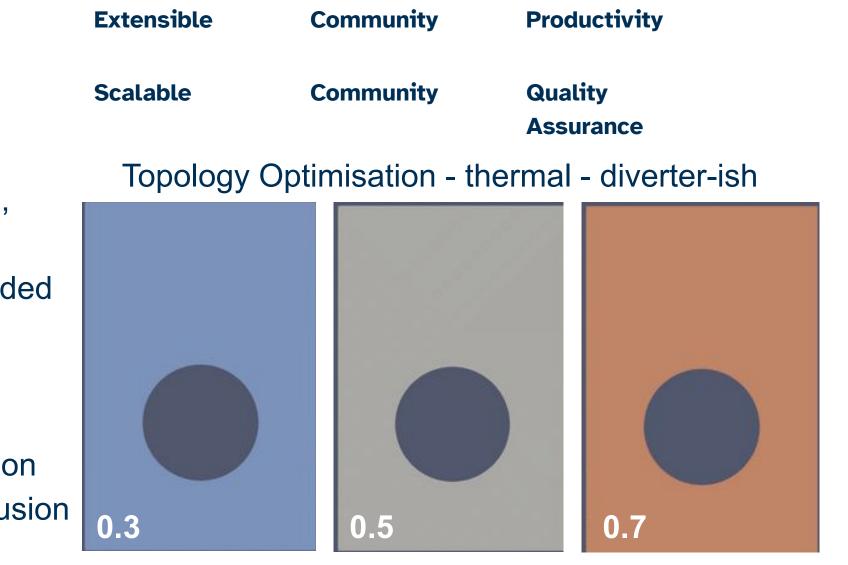
Ideal partitioning for a neutral particle problem

The Pantheon (of our applications)

- Using the MOOSE framework as the basis for a range of applications to solve fusion engineering problems
 - E.g. neutronics, tritium transport, fluids, electromagnetism, optimisation etc
- Sets of prebuilt physics that can be assembled to fit a wide variety of our problems
- NQA-1 Validated Applications

OFFICIAL

X


UK Atomic Energy

Why MOOSE (c.f. Dubas et al)

HPC scalable

Capability

 Recent feature example, Topology (Thermal & Mechanical) recently added fully parallelised 2/3D optimisation capability.

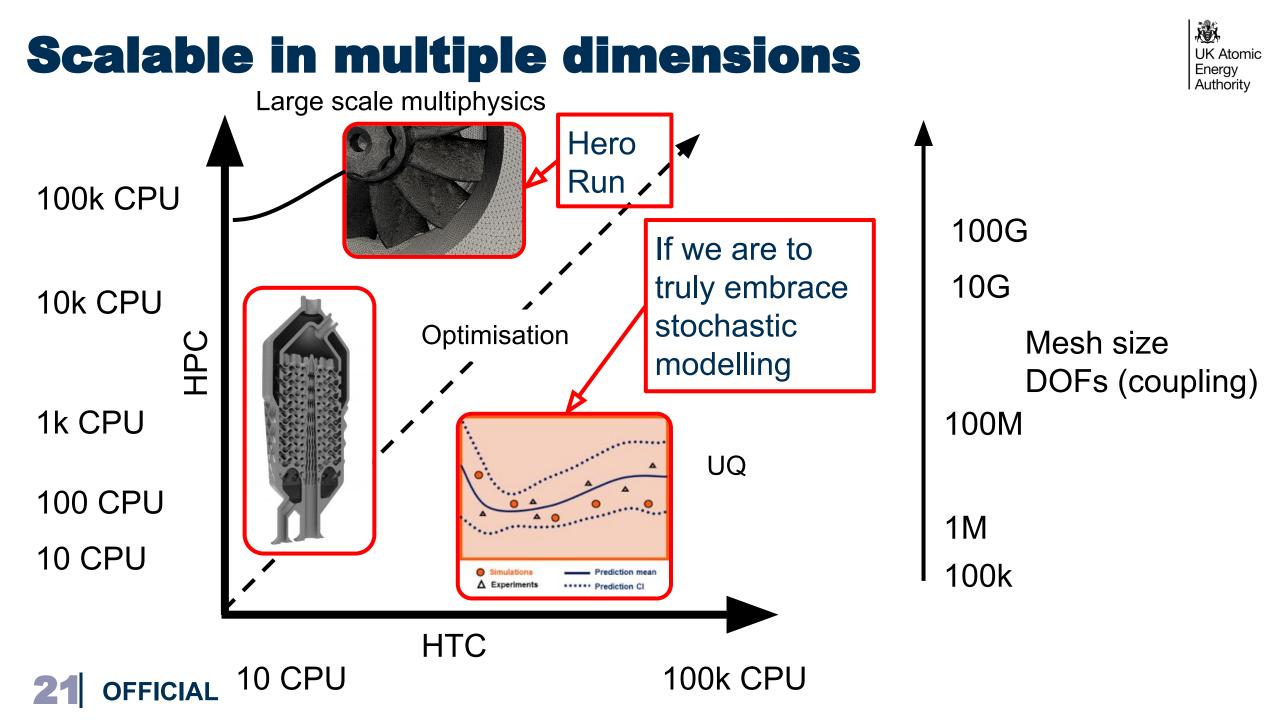
Open Source

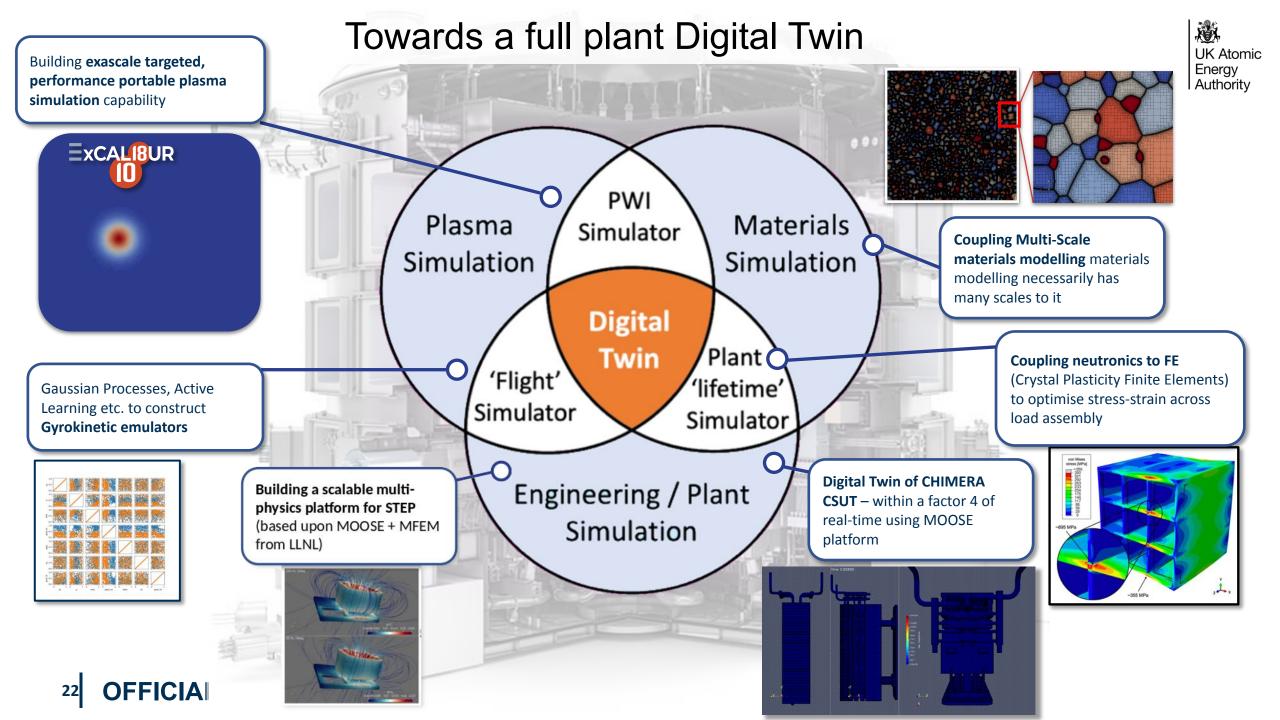
Play Physics

Plug and

- Want to do more multiphysics optimisation
- Coupled T-M common fusion problem
 OFFICIAL

Void fraction


Why is Open so important?


- In the field of nuclear (anything) but specifically fission based codes are very often subject to e.g. US Export Control, ITAR, or other regulations
 - Often means analysis software needs extensive background checks & Single Site
 Single User licences (2) (any MCNP users out there?) no Marconi for you

UK Atomic Energy Authority

- It means easy collaboration, we can easily work on projects together to jointly improve software without complex legal agreements
- It means every gets the benefit of the software (no barriers)
- It often means higher quality of code (it also sometimes doesn't :))
- It means more users for your code
- For publicly funded works it is philosophically the right thing to do
- Can be deployed anywhere take advantage of compute anywhere
- Public development means fewer repetition of doubled development
- Development costs can easily be shared

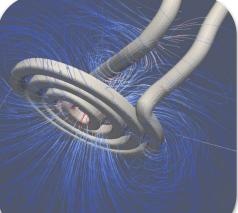
20 OFFICIAL

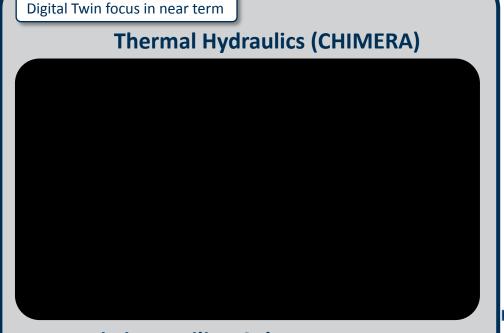
Chimera: (Greek mytholo

...walking before running - construction of sub-system proxies

STEP Powerplant

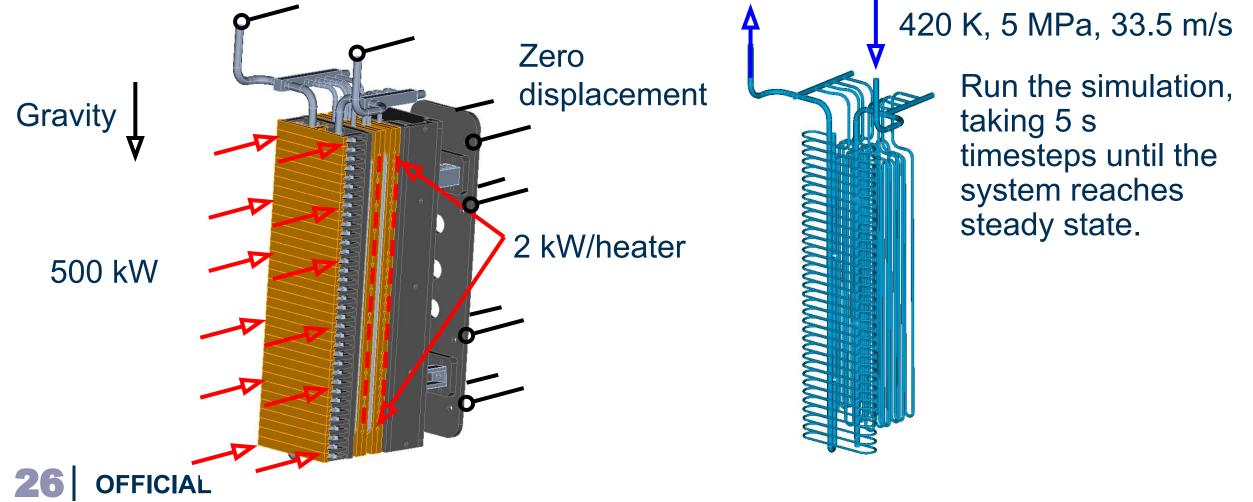
Integrated Plant Design


Small scale directed testing

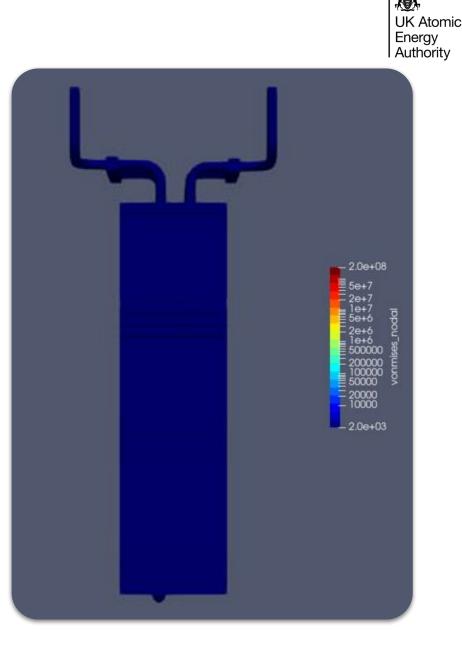

physics in isolation of others

necessary, but validating some

Existing Facility: Sub-system proxy


Component / small rig Level

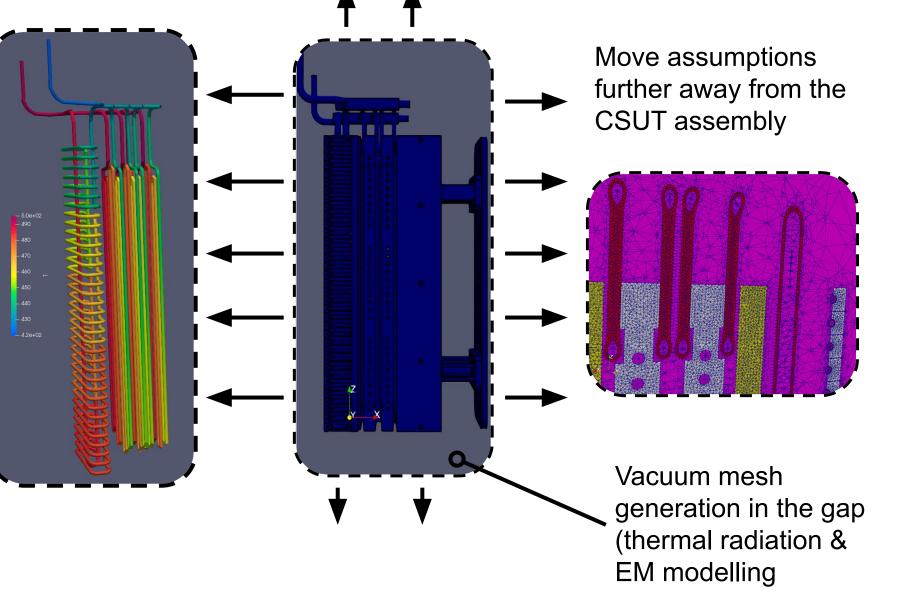
CHIMERA Definition



• CHIMERA load case, currently approximated atmospheric convective HTC boundary condition. There are other CHIMERA cases, e.g. the magnetic sample, this focuses on the thermo-mechanical sample

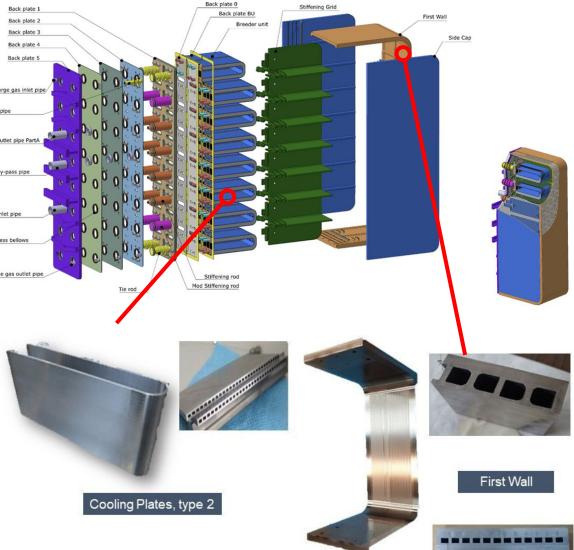
CHIMERA Simulations

- New Intel Sapphire Rapids machines at CSD3 have improved throughput of simulations by a factor roughly 6x
 - reduced the simulation time from ~12 hours \rightarrow **1.8** hours
 - This brings our current best efforts to within a factor of 4x of real time, i.e. 1 second of real time takes 4 seconds to simulate
- There is potential to reduce the runtime potentially further, e.g. switch to GPU solve via Kokkos could get further 2x speedup
- Need to increase fidelity further, to include impact of thermal radiation, cryostat and so on
- All other toolchain in MOOSE ecosystem benefit, e.g. STEP blankets, HIVE etc.



Specific CHIMERA Plans & Challenges

- Thermal simulations
- EM simulations
- Link with systems?
- UQ likely MC based
- Thermal-Hydraulic
 network
- CFD Coupling
- Reduce BCs
- Higher order reps
- IGA based version
- More detail and more fidelity
- Fewer assumptions, let more emergent behaviour arise

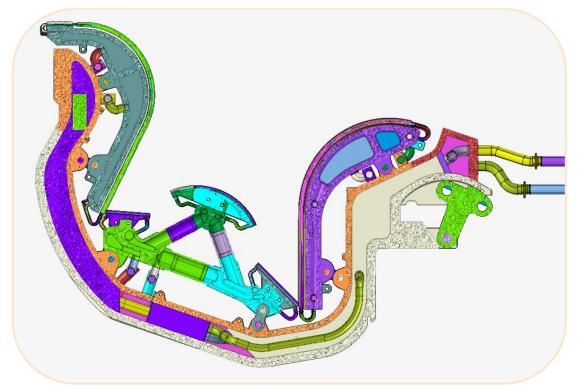


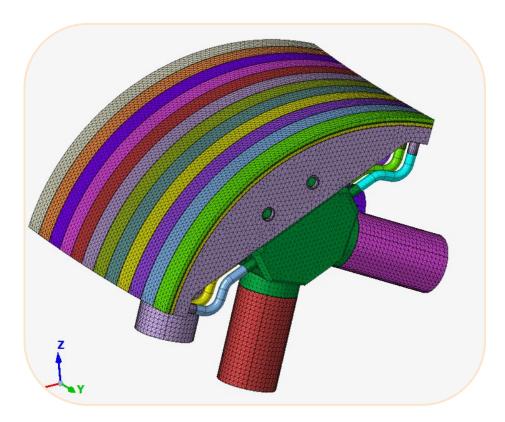
CHIMERA serves as a useful surrogate... CHIMERA serves as an

experimental surrogate for blankets and divertors

- The experimental conditions aren't equivalent but component complexity comes close
- Common physics between them, similar challenges with time stepping fast/slow physics
- CHIMERA load case is not equivalent to a full fusion load case (no ionising radiation)
 - However, despite that if we cannot model CHIMERA then we are going to face issues when attempting full fusion systems
- Ultimately, will include MHD

OFFICIAL

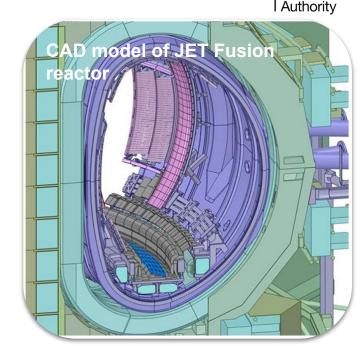

I do not fear computers, I fear the lack of them


Isaac Asimov

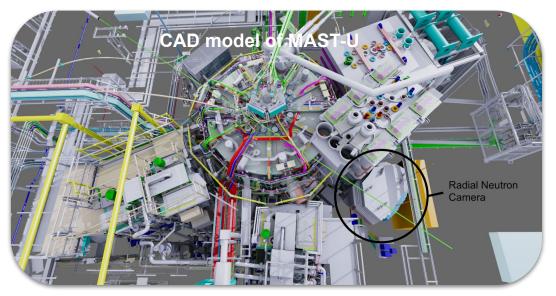
It is not however, all plain sailing...

- I'm fairly confident that if we can mesh a geometry, then we can solve the problem with enough brute force parallelisation & AMR see ITER divertor
- However, preprocessing of complex geometry
 - Takes a long time
 - I've had good success with SimLab performant even on large geometries

UK Atomic Energy Authority



Geometry processing dominates


- ...over simulation runtime
- As geometry complexity grows; geometry pre-processing time grows something like something like O(N²) where N is the number of components
 - Some degree of automation is required
 - CAD is error prone and often inconsistent with reality - how to fix?
 - Very large geometries can be difficult to check
 - Not only require no geometry overlaps, some analysis requires consistent gaps e.g. mechanical contact
- Fire-and-forget Mesh processing efficiently parallelised e.g. BoxerMesh or psculpt meshes are often not conformal
- We need a focussed effort on CAE, including meshing for HPC, including metadata

OFFICIAL

UK Atomic Energy

The secret of change is to focus all of your energy not on fighting the old, but on building the new

Socrates

timeframe If we are to do so, we will need to deploy

potentially 10's of thousands of engineers to perform detailed design work

energy on the UK electricity grid in the 2040

- **Problem:** Fusion engineering calculations are quite strongly coupled multi-scale multi-physics simulations
- **Problem:** COTS software does not deliver all the physics needed to simulate fusion engineering
- Problem: COTS software cost model does not scale
- Problem: COTS software is a black box difficult to prove correctness
- **Problem:** Many COTS software does not hardware scale

How can we get engineers using HPC? The STEP programme aims to deliver fusion

FOR CHRISTMAS

I WANT

BE REALISTIC

How can we get engineers using HPC?

- Only a few issues to solve there, shouldn't be too bad.....
 - Solution: Use a software that allows multi-scale multi-physics problems to be solved
 - Solution: Use software that can couple in other physics, or is setup to solve arbitrary PDEs
 - Solution: Use free/open software
 - Solution: Use open source software
 - Solution: Use software that can scale
- Great, let's use that and....
 - **Problem:** Is it validated for my use case?
 - **Problem:** Does it have a GUI?
 - **Problem:** What's UQ?
 - **Problem:** Where do I get training from?
 - **Problem:** How do I use a terminal?
 - **Problem:** Whats Docker?

UK Atomic Energy Authority

Conclusions

- The timelines to deliver fusion are short, with insufficient time to perform experimental driven validation
- Simulation must be used as the 3rd mode of discovery
 - Can only be done if simulation is actionable
 - Requires VVUQ
- The simulation we use must be **open** anyone who has suffered export controlled software will understand the pain
 - We need to deploy this kind of software to 10k engineers to deploy on fusion problems, needs to be useable, needs to be freely, available, needs to be validated
 - If we can get industry using open HPC scalable tools, it is they who will really drive innovation and deploy these tools to solve societal problems, build better bridges etc
- We have demonstrated real problems running on small amounts of hardware, now need to the scales to 100k cores, with a vision to running simulations for whole reactor systems

