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Neutrons interact with lattice Creating structural defects

But

Superconducting properties vs 
neutron irradiation:
lattice damage and vortex pinning

Need to evaluate 
expected damage and 

its effects on HTS in ARC



Expected radiation environment and damage 
for YBCO tapes in compact fusion reactors
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Neutron transport
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Monte Carlo 
simulations

Model of reactor’s
geometry

Neutron spectra on 
the HTS magnets

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 



Neutron-lattice interaction
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Interaction 
with the lattice

Neutron spectra on 
the HTS magnets PKA spectra in YBCO

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 

PKA-SPECTRA

• Primary Knock-on Atom (PKA) 
spectra needed for MD simulations

• Complex spectra result from elastic
and inelastic interactions



Cascade simulation
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Molecular 
dynamics 

simulations
PKA spectra in YBCO Cascade simulations

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 

• Collision cascade simulations
• Results:
• Defect size vs energy
• Defect morphology
• Defect recombination
• Temperature transients

• Important for SC properties



YBa2Cu3O7 (YBCO)

• Ceramic material
• Available interatomic potential: 

Buckingham+Coulomb fitted to DFT 
results (Gray et al., Supercond. Sci. 
Technol. 35, 035010 (2022))
• Ziegler-Biersack-Littmark screened 

nuclear repulsion included
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MD –collision cascade simulations
Workflow:

• same as Gray et al., SUST 35, 035010 
(2022))

• Large cells (1-100 million atoms)
• Initial equilibration (NpT-

ensemble)
• Collision cascade performed in 

NVE-ensemble within a sphere
• Outer atoms thermostatted to 

dissipate excess energy
• PKA launched with initial velocity 

according to spectrum
• Track number of defects with 

Wigner-Seitz analysis (Ovito) 11



MD – Initial conditions
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D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 



MD – Results
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Average number of defect vs time Temperature vs time

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 



MD – Results
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Average number of defect vs Ek

Ek=7 keV

Ek=110 keV

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023) 



Ongoing work
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Electronic stopping power

• Fast (keV) displaced ions interact 
with electrons
• Electronic stopping power 

calculated with SRIM
• Included in MD simulations as 

friction term
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Electronic stopping power – Results 

Effect of electronic stopping:
• Reduction of maximum and 

final number of defects
• Species and temperature 

dependent effect
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T = 20 K T = 300 K

PKA = Ba
Ek = 7 keV

PKA = O
Ek = 1 keV



Defects vs PKA (Ek = 7 keV)
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T = 20 K T = 300 K

Mass (a.u.)
Ba 137.33
Y 88.90
Cu 63.55
O 15.999



Recombination rate vs PKA (Ek = 7 keV)
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Recombination rate = 1 − ⁄𝑁!"#$% 𝑁&'$(



20
Ba PKA, T = 300 K, Ek = 110 keV
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TEM reconstructions – Defects
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From Linden et al., Journal of Microscopy 286, 3-12 
(2022), neutrons from TRIGA MARK II

4) crystalline

6) distorted

5) amorphous
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Additional slides
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Defects vs PKA (Ek = 7 keV)
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Number of vacancies vs PKA (Ek = 7 keV)
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O vs cation vacancies


