Computational investigation of radiation damage in $YBa_2Cu_3O_7$ superconducting tapes for nuclear fusion applications

D. Gambino¹, D. Torsello^{2,3}, F. Ledda^{2,3}, L. Gozzelino^{2,3}, A. Trotta⁴, and F. Laviano^{2,3}

¹ Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden

² Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy

³ Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino 10125, Italy

⁴ MAFE, Eni S.p.A., Venezia 30175, Italy

Nuclear fusion – Magnetic confinement approach

Magnetic confinement

Magnetic confinement approach – compact reactors

High temperature superconductors (HTS) tapes: high critical current (B = 20 T @ T=20 K)

Neutrons interact with lattice Creating structural defects

Magnetic confinement approach – compact reactors

High temperature superconductors (HTS) tapes: high critical current (B = 20 T @ T=20 K)

Neutrons interact with lattice Creating structural

Superconducting properties vs neutron irradiation:

lattice damage and vortex pinning

Magnetic confinement approach – compact **Superconducting properties vs** reactors neutron irradiation:

High temperature superconductors (HTS)

lattice damage and vortex pinning

Need to evaluate expected damage and its effects on HTS in ARC But 0.8 0.6 0.4

Fast neutron fluence (10²² m⁻² Fischer et.al. SuST (2018)

Expected radiation environment and damage for YBCO tapes in compact fusion reactors

Neutron transport					ARC (expected in 10TRIGA (Fischeret al [12])Parameteryears)[12])Fast neutron fluence 1.6×10^{19} 4.0×10^{18} (neutrons cm ⁻²) dpa0.520.02
				PHITS Particle and Heavy Ion Transport code System	H yield (appm dpa ⁻¹) 0.5 0 He yield (appm dpa ⁻¹) 10.6 0
Model of reactor's geometry				Monte Carlo simulations	Neutron spectra on the HTS magnets
Toroidal Field Coil Central Solenoid Plasma	Component	Material	Density (g cm ⁻³)	Thickness (cm)	
	FW VV Molten salt Multiplier VV Molten salt VV TF	W Inconel steel F_4Li_2Be Be Inconel steel F_4Li_2Be Inconel steel YBa ₂ Cu ₃ O ₇	19.25 8.44 1.94 1.85 8.44 1.94 8.44 6.40	0.1 1 2 1 3 100 3 20	Loss ARC at TF magnet location
					10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-1} 10^{0} 10^{-1} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-1} 10^{0} 10^{-1} E (MeV)

Neutron-lattice interaction

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023)

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023)

9

YBa₂Cu₃O₇ (YBCO)

- Ceramic material
- Available interatomic potential: Buckingham+Coulomb fitted to DFT results (Gray et al., Supercond. Sci. Technol. 35, 035010 (2022))
 - Ziegler-Biersack-Littmark screened nuclear repulsion included

MD – collision cascade simulations

Workflow:

- same as Gray et al., SUST 35, 035010 (2022))
- Large cells (1-100 million atoms)
- Initial equilibration (NpTensemble)
- Collision cascade performed in NVE-ensemble within a sphere
- Outer atoms thermostatted to dissipate excess energy
- PKA launched with initial velocity according to spectrum
- Track number of defects with Wigner-Seitz analysis (Ovito)

MD – Initial conditions

Ba PKA							
Т (К)	20	300					
	0.003	-					
	0.1	0.1					
E _k PKA (KeV)	7	7					
	110	110					
О РКА							
Т (К)	20	300					
E _k PKA (keV)	1	1					

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023)

MD – Results

D Torsello, D Gambino, L Gozzelino, A Trotta and F Laviano, Supercond. Sci. Technol. 36, 014003 (2023)

MD – Results

Average number of defect vs E_k

Ongoing work

Electronic stopping power

- Fast (keV) displaced ions interact with electrons
- Electronic stopping power calculated with SRIM
- Included in MD simulations as friction term

Electronic stopping power – Results

Effect of electronic stopping:

- Reduction of maximum and final number of defects
- Species and temperature dependent effect

$$PKA = Ba$$

$$E_{k} = 7 \text{ keV}$$

$$PKA = O$$

$$E_{k} = 1 \text{ keV}$$

$$F_{k} = 1 \text{ keV}$$

T = 20 K

2000

T = 300 K

Mass (a.u.)

Y

Defects vs PKA (
$$E_k = 7 \text{ keV}$$
)

T = 300 K

137.33 Ba 88.90 63.55 Cu 15.999 0

T = 20 K

Average Number of Defects

Recombination rate vs PKA ($E_k = 7 \text{ keV}$) Recombination rate = $1 - N^{\text{final}}/N^{\text{peak}}$

Ba PKA, T = 300 K, Ek = 110 keV

Ва РКА, Т = 300 К, Ek = 110 keV

From Linden et al., Journal of Microscopy 286, 3-12 (2022), neutrons from TRIGA MARK II

 Workflow for computational investigation of radiation damage of HTS for nuclear fusion – from neutrons to damage

- Workflow for computational investigation of radiation damage of HTS for nuclear fusion – from neutrons to damage
- Defect sizes, morphologies, recombination, transient temperature

- Workflow for computational investigation of radiation damage of HTS for nuclear fusion – from neutrons to damage
- Defect sizes, morphologies, recombination, transient temperature
- Model refinement (ongoing and future):
 - Electronic system
 - Defects vs PKA and energy
 - TEM

Funding:

Superconductor Science and Technology

in compact fusion reactors

DOI 10.1088/1361-6668/aca369

Published 6 December 2022 • © 2022 IOP Publishing Ltd

Superconductor Science and Technology, Volume 36, Number 1 Citation D Torsello et al 2023 Supercond. Sci. Technol. 36 014003

Journals - Books Publishing Support 🔒 Login -

Expected radiation environment and damage for YBCO tapes

D Torsello^{5,6,1,2} (D), D Gambino^{5,3} (D), L Gozzelino^{1,2} (D), A Trotta⁴ and F Laviano^{1,2} (D)

IOPscience

PAPER

- Workflow for computational investigation of radiation damage of HTS for nuclear fusion – from neutrons to damage
- Defect sizes, morphologies, recombination, transient temperature
- Model refinement (ongoing and future):
 - Electronic system
 - Defects vs PKA and energy
 - TEM

Additional slides

Defects vs PKA ($E_k = 7 \text{ keV}$)

Number of vacancies vs PKA ($E_k = 7 \text{ keV}$)

O vs cation vacancies

