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Postdoc Opportunity!
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• Novel Stellarator Designs 
• Stellarator/Divertor Topology
• Plasma SOL
• Plasma, Applied Math, CS welcome
• Work on DESC

• Email: ekolemen@princeton.edu (or talk to me)

mailto:ekolemen@princeton.edu
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Tokamak Disruption (C-Mod)

youtu.be/CUfR819hIDg
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Magnetic Confinement Devices: Tokamak vs. Stellarator

Tokamaks
• Axisymmetric	

○ Simpler	geometry
○ Guaranteed	particle	confinement

• Requires	substantial	plasma	current
○ Must	be	driven	
○ NOT	steady	state!

• Current	leads	to	instabilities			->	
disruptions

Stellarators
• Inherently	3-D

○ Complex	geometry	and	coils
○ Confinement	not	guaranteed

■ certain	fields	exist	which	recover	this	
(Quasisymmetry)

○ Larger	design	space
• Does	not	need	plasma	current

○ Steady	state
○ No	disruptions

https://www.economist.com/science-and-technology/2015/10/24/stellar-work
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What is the ideal way to optimize stellarators?

• Constraints g(x): 

– MHD equilibrium

– Physicist insight: Analytical calculations (e.g. NEA)

– Engineer insight: e.g. A<5, …

• Objectives f(x):
– Quasi-symmetry
– Turbulence
– …

• Physicist/engineer insight: relative importance of f(x)
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Then Call A Fast Code

Constraints: gphysicist =Fix NEA 
+ g= MHD Eq.

Optimize remaining volume

Fast= GPU + Jacobian

è 

è 
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DESC is a new tool for stellarator optimization
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Accurate Equilibria Fast Optimization

• Stellarator equilibria are 
complicated

• Design space is much 
larger than tokamaks

OP OH OT QP QH QA
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A flexible stellarator optimization suite
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DESC

Constraints f(x)

Objectives g(x)

Equilibrium

• Fixed-boundary surface
• Pressure profile
• Current/rotational transform
• Total toroidal magnetic flux

• Ideal MHD force balance
• Energy

Optimization 
Algorithm

Gradient 
Information
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A flexible stellarator optimization suite
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DESC

Constraints f(x)

Objectives g(x)

Optimized Stellarator

• Ideal MHD force balance
• Equilibrium profiles
• Some boundary modes

• Quasi-symmetry
• Mercier stability
• Aspect ratio
• etc.

Optimization 
Algorithm

Gradient 
Information
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DESC Developed with the following design principles:
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1. Simple user interface
– Open-source Python code
– Well documented
– High test coverage
– Easy to install

2. Local error quantification
– Pseudo-spectral (collocation) methods

3. Properly resolve the magnetic axis
– Global basis functions
– Zernike polynomials

4. Exact derivatives of all objectives

– Automatic differentiation (JAX)
5. Hardware agnostic

– Run on CPUs, GPUs, and TPUs
6. Extendable to new applications

– Modular & flexible code structure

https://github.com/PlasmaControl/DESC 

https://github.com/PlasmaControl/DESC
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𝑋 𝜌, 𝜃, 𝜁 = '
!"#

𝑋!"#𝒵!
" 𝜌, 𝜃 ℱ#(𝜁)

• Satisfies analyticity conditions at the magnetic axis

• Exponential convergence (if solution exists and is 
smooth)

Zernike spectral basis better than concentric circle basis

𝑙, 𝑚 = (0,0)

(2,0)

(4,0)

(1, −1) (1, +1)

(2, −2) (2, +2)
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sin 𝜃 modes cos 𝜃 modes

è

spectral coefficients Zernike polynomials

Fourier series

Poincare section
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DESC spectral methods yield more accurate equilibrium solutions

W7-X
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DESC Allow Much Faster Stellarator Optimization

Hardware Run Time
Intel Cascade Lake CPU 48 min
NVIDIA A100 GPU 20 min

è

https://github.com/PlasmaControl/DESC 

Example Coil Optimization

https://github.com/PlasmaControl/DESC
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Next up: End-To-End Stellarator Optimization with AutoDiff

Scidac work M. Churchill PPPL
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Main Result: General Omnigenity Easily Obtained with DESC

15

OP OH OT QP QH QA
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Combine equality + inequality constraints

Choose small weight for inequality constraints to enforce “approximately”
Choose large weight for equality constraints to penalize a lot

Limitations:
• Hard to guess a-priori what weights should be
• Even small weights for “inequality” constraints can overly penalize things we don’t care about

Current optimization methods: Sum of Squares
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• Combination of traditional Lagrangian + quadratic penalty

• Doesn’t introduce any non-smooth terms
• “Exact” method - doesn’t need 𝜇 → infinity
• Solve sequence of subproblems for increasing 𝜇, λ
• Provides estimate of true Lagrange multipliers - useful information about trade-offs

• Open source packages available (LANCELOT, NLopt, etc). Also python/JAX version implemented in 
DESC

Better methods: Augmented Lagrangian
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DESC Allow Combined Constraints + Optimization

Find xk+1 = min 
LA(x,λk,µk)

Calculate 
constraint violation 

c(xk) and check 
tolerances

Depending on 
c(xk), update λk or 

µk

è
 

g(x)=0

Projection  back onto 
constraint
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Application of Multi-Objective Optimization in DESC

NCSX + L&P precise 
QA: Magnetic well, but 
large concave regions

ESTELL: simpler geometry, 
but magnetic hill
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Minimize fQS (“two term” metric) subject to

Force balance: 

Iota:                  

Magnetic Well: 

Mean Curvature: 

𝜅1, 𝜅2 eigenvalues of second fundamental form

Solve with least squares augmented Lagrangian
method in DESC

Application of Multi-Objective Optimization in DESC
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QS better than NCSX + stability without concavity
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Free Boundary DESC

Free boundary constraints:

Flux surface:

Pressure balance: 

Tangential jump:

Bin = B from fixed boundary DESC

Bout = Bcoil + BVC + BK

● Parameterize unknown sheet current K, 
along with R, Z

● Use high order singular integration scheme 
(Malhotra et al 2019) to compute virtual 
casing + sheet current field BVC + BK

● Minimize all 3 equations simultaneously
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Free Boundary DESC

Free boundary constraints:

Pressure balance: 

Bin = B from fixed boundary DESC

Virtual Casing: -nxBout = Kout

Biot-Savart(Kout)=Bcoil

● Alternatively: 

● Use high order singular integration scheme 
(Malhotra et al 2019) to compute virtual 
casing for Bout

● Just check for pressure balance.
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Free Surface DESC vs VMEC
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● Constrain global equilibrium by NAE 
behavior as 𝝆→𝟢
○ Use information from NAE where it is most valid
○ Avoid singular behavior present when 

evaluating at large r
● Map NAE coefficients to Fourier-Zernike 

modes of DESC to fix O(𝝆0) (axis) and  O(𝝆1) 
behavior

Near-Axis Expansion (NAE) Constraints in DESC 

25

NAE equilibrium evaluated at r =0.1
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Near-Axis-Expansion Constrained Equilibria in DESC

• NAE-constrained 
equilibrium iota 
matches NAE near axis

• NAE-constrained 
equilibrium maintains 
better QS near axis
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General Omnigenity: confined particles without Quasi-Symmetry

• Omnigenity: the class of magnetic fields in which 
the bounce-averaged radial drifts of trapped 
particles vanish
– 𝐵 = 𝑩  contours are closed curves
– 𝐵"$% contour is straight in Boozer coords
– “Bounce distances” between consecutive 𝐵 

points are independent of the field line 𝛼

• Previous omnigenous equilibria were limited to:
– Quasi-Axisymmetry (QA)
– Quasi-Helical symmetry (QH)
– Omnigenity with Poloidal contours (OP aka QI)

• General omnigenity = larger design space!

28
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General omnigenity optimization is implemented in DESC

1. Define a target magnetic well “shape” (in computational coordinate 𝜂)
2. Define a target “shift” on each field line (preserves constant bounce distances)
3. Optimize to minimize the errors: 𝐵&'()!)*+)(" − 𝐵,$+-&,

29
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• Map between computational and Boozer coordinates:
ℎ 𝜌, 𝛼, 𝜂 = ℎ 𝜃., 𝜁.

2𝜂 + 𝜋 +5
!/0

14

5
"/0

25

5
#/346

46

𝑥!"#𝑇! 2𝜌 − 1 ℱ" 𝜂 ℱ#478 𝛼 = 9
𝑁𝜁.

−𝜃. +
𝑁
𝑀
𝜁.

• Constant bounce distances are preserved: 
𝛿 ∝ Δℎ = ℎ 𝜌,+𝜂, 𝛼 − ℎ 𝜌,−𝜂, 𝛼

= 4𝜂 +5
!/0

14

5
"/0
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𝑥!"# 𝑇! 2𝜌 − 1 ℱ#478 𝛼 ℱ" +𝜂 − ℱ" −𝜂

= 4𝜂

∴
𝜕𝛿
𝜕𝛼

= 0

Omnigenity is parametrized by a coordinate mapping

30

for 𝑀 = 0

for 𝑀 ≠ 0 

helicity = (𝑀,𝑁)

free parameters Fourier seriesChebyshev
polynomials

= 0 because ∑9:;ℱ9 𝜂
is an even function of 𝜂

𝜌 = flux surface label
𝛼 = field line label
𝜂 = coord along field line
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Examples of the different types of omnigenity

General Omnigenity with poloidally/helically/toroidally-closed 𝐵 contours (OP, OH, OT)
Quasi-Symmetry is a subspace of omnigenity (QP, QH, QA)
• All solutions used near-axis expansions as an initial guess (from pyQIC and pyQSC)
• Optimized for omnigenity at five surfaces (no other objectives)
• Aspect ratios ≈ 20

31

OP OH OT QP QH QA
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Title

• Body text. 

32
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Solutions show good particle confinement! 

• Top: Neoclassical collisional transport magnitude
– Computed by NEO

• Bottom: Collisionless losses of fusion-born alpha particles
– Computed by SIMPLE
– Particles initialized at 𝜌 = 0.5
– Configurations scaled to 𝑎 and 𝐵 of ARIES-CS

• Reference case is W7-X at 𝛽 = 4%
• Precise QP is difficult (impossible?) to achieve
• Higher alpha particle losses for OT case might be due to wide 

banana orbits? 

33
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GPU Allows Direct Optimization of Particles (Instead of proxies such as omnigenity)

34

• GPU has advantage in doing the same compute many times
• Integrate lots of particle trajectories in DESC  (guiding center equations of motion)
• JAX autodiff: Jacobian of trace particle trajectories wrt equilibrium
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• Particle Tracer:
– Integrate Guiding Center EoM directly
– Optimize the equilibrium from particle’s trajectories using JAX autodiff

Equilibrium optimization using a Particle Tracer

35

Particle drifting from flux 
surface ψ 

Particle confined in flux 
surface ψ 

Starting Equilibrium Optimized Equilibrium
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Turbulence + QS Optimization (Using GX+ DESC)

• GX + DESC coupling enables direct optimization of nonlinear heat fluxes with good quasi-symmetry.
• SPSA algorithm allows for cheaper gradient approximations for noisy objectives.
• Optimizer reduces nonlinear heat flux by a factor of 3, while maintaining good quasi-symmetry.
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Conclusions: DESC multi-objective optimization applied to 
Turbulence Optimization, NEA, free surface stellarator & General Omnigenity
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Postdoc Opportunity!

• Novel Stellarator Designs 
• Stellarator/Divertor Topology
• Plasma SOL
• Plasma, Applied Math, CS welcome
• Work on DESC

• Email: ekolemen@princeton.edu (or talk to me)

mailto:ekolemen@princeton.edu

