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Multi-scale simulations of
proton-driven fast ignition of
inertial fusion tarc '

Paul Gibbon, FusionHPC Warkshop
Barcelona 29-30 November 2023




The National Ignition Facility shots that changed the game
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Laser-driven fusion has been successfully achieved and scientifically validated

© August 8, 2021

NIF validated the fundamental science of Inertial Fusion Energy (IFE) by
demonstrating a propagating burn wave

>1.3 MJ of fusionyield 709, conversion of laser
was produced energy to fusion energy

e December 5th, 2022

NIF validated the commercial viability of IFE by achieving net energy gain
(fusion energy/laser energy >1)

>3.2 MJ of fusionyield 1609 conversion of laser
was produced energy to fusion energy

Fusion Yield (MJ)

Fusion is now an engineering and commercial
scale-up problem
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A power plant will need higher gain and higher robustness
compared to NIF

NIF Ignition Inertial Fusion Energy

)

Higher gain
and physical
robustness

Gain ~ 2x Gain ~ 100x
Single shot 10 Hz
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IFE power plant: we need a target gain of ~ 100 at 10 Hz

Target Fusion
— ™ gain =~ energy

L G E,G

Laser energy
E

Laser efficiency

Thermal Electricity
efficiency —— produced
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— EnergytorunthelaserisE;/n;
— Energy producedis E1.G. 1

- If we keep recirculating power frac. to less than 25%, thenn;n,G > 4

- Ifn = 0.4, then, n,.G > 10
- Ifn, = 0.1,then, G > 100

Fraction f returned to run plant

Out to customers '.“
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How do we
achieve this?

- For~750 MW out to the grid, then repetition rate needs to be about 10 Hz for 2.5 MJ laser
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Focused Energy was founded in July 2021 % 0F eneroy

Darmstadt,
Germany

Our goal: demonstrate commercially viable inertial fusion energy
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FE's strategy is based on the Proton Fast Ignition concept * FeE ENeReY
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Absorption and Acceleration and Deceleration and Laser-ion beam lon beam heating Ignition and fusion
heat transport rocket effect compression generation of dense fuel burn
Compression Heating Ignition
400 r(g/cm?) . .
350 — Two sets of lasers are needed with different
200 requirements for compression and heating
0 — Physics of compression and ignition largely
-200 understood, but needs verifying at scale
0.01
-400

-400 -200 0 200 400 )
2(um) M. Roth et al., Phys. Rev. Lett. 86, 436(2001)  °©
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A sub-scale implosion facility will provide a key de-risking C0F eneroy
step towards a Fusion Power Plant

Phasel

e 30kJ(LP)+6kJ(SP)beams based on
liquid-cooled flashlamps (shot/5 min)

20 compression

DT wetted foam targets

« (Capability for 100+ shots/day

Phaselll

« Upgrade with additional 30 kJ (LP)+ 6
kJ (SP) diode-pumped beams (10 Hz)

« Targetinjectorand tracking, beam
steering for 10 Hz operation

1o ignitor * Integrated de-risking at sub-scale
beams
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Target physics design

Compression requirements Ignitor requirements*

— 2.59 DT fuel = 200 MJ yields
— Laser energy (total)<2 MJ
- p>300g/cm?’, pR>2.5g/cm?

— ~20 kdJ proton beam energy
— ~20pumfocal radius
— <20 ps pulse duration

Compression design Ignitor design

— CH ablator, DT-wetted foam,
with clean inner DT ice or liquid

— Ep~15MJatA =0.5um

- 24-48 beam ports

— LPImitigation techniques
=> laser and target design

— Maximise conversion efficiency:
= foil composition and dimensions,
laser pulse shaping

— Maximise focusability:
= foil shape, laser irradiation profile,
cone design to tailor E- & B-fields

*Atzeni et al., Nucl. Fusion 42, L1-L.4(2002)
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PFl modelling requirements: a fusion Exascale Challenge! % },-.- ENERGY
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1 2 3 4 5 6
Absorption and Acceleration and Deceleration and Laser-ion beam lon beam heating Ignition and fusion
heat transport rocket effect compression generation of dense fuel burn
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2D/3D wave- 1D/2D/3D 2D/3D particle-in-cell 2D/3D hybrid particle
fluid & PIC radiation-hydrodynamics (PIC) transport + rad-hydro

— Length scales: nanometres -> millimetres

— Time scales: femtoseconds -> nanoseconds
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HPC access through GCS and EuroHPC is helping FE to tackle " Enercy
these computational challenges

HPC Vega, [ZUM, Maribor 28 M core-hours*

Karolina supercomputer 13.4 M core-hours™
IT4Innovations, Ostrava

JUWELS, Jdlich 15 M core-hours
Supercomputing Centre

*EuroHPC project: EHPC-REG-2023R01-043 < % EuroHPC

10
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EuroHPC & GCS projects: compression symmetry
and physics of proton ignitor beam generation

IV. Proton beam

Proton ignitor beam

15-20 kdJ, 10-20 ps, transport
r=15-20 pm = DUED / PETRA

Ignition laser pulse:
200 kJ
3-10 ps
w =500-600um

Compressed DT fuel
300-400 g/cc; pR>1

I. Cone-in-shell
fuel compression
= FLASH

Il. Proton beam lll. Proton beam

conversion efficiency focusing
= EPOCH = EPOCH
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Gauss Centre for Supercomputing



Performance of EPOCH and FLASH codes on Vega & Karolina

R SN S8 5

EPOCH

T. Arber et al., PPCF 57, 113001(2015)
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|. Cone-in-shell simulation of DT fuel compression with FLASH  * 7 =veroy

Alfonso Mateo Aguaron, Javier Honrubia (UP Madrid & FE)

Simulation details:

2D cylindrical geometry for hydro & laser ray-tracing

Grid domain 1024 pm x 2048 pym; AMR with 1 wm resolution,
blocksize 16x16

Variable timestep 4t =1.3e-13 s; 20h runtime on 512 cores

Mitigation of FLASH technical issues:

grid remapping to remove numerical Rayleigh-Taylor instabilities
corrected EOS to avoid negative pressures etc.
smoothing across material interfaces

calibration of shock wave propagation via cross-code
benchmarking with MULTI-IFE and DUED

Density (g/cm?)
200.0

— 2.991

B 0272

. 0.0006687
L 1.000e-05
Max: 19.30

Min: 1.000e-05

Yy (um)

1000

500

-500

-1000

-1000 -500 0 500 1000
r (um)

L]

Proton ignitor beam




Il. Proton beam conversion efficiency (CE) modelling

Valeria Ospina-Bohorquez

\
Laser parameters:
-~ intensity

T, =3 ps
- contrast I, =3 %10 Wem ™2

—

duration, shape
spot size, distribution
wavelength?

ENERGY

Target parameters:
-~ substrate thickness
— proton layer thickness

-~ proton layer composition
(LiH, CH, ,ErHs ...)*

E DUED rad-
! hydro
| simulations

\

A

> >

*M.E. Foord et al., J. Appl. Phys. 103 056106 (2008)
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Parametric scans of CE with 1D surrogate PIC model

Proton layer thickness Proton layer composition
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— At today’s prices, each 1% improvement in CE translates to saving of ~S50M in the ignitor laser system!
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2-D simulations with diagnostic probes to characterize
proton beam

Integrated spectrum energy, t = 4000 - 10000 fs

Spectrum t = 4.000 - 10.000 ps 107+
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- Experimental campaign on proton focusing planned in spring 2024 at Colorado State University
(LaserNetUS Program)



lll. Proton beam focusing with ‘integrated’ cone targets™

Javier Honrubia

Y [um]
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Multiple effects of cone wall and DT fuel plasma:

— Strong return currents through cone walls and
from DT plasma replenish foil electrons and
suppress sheath field, reducing proton
conversion efficiency

— Magnetic fields generated near cone tip
contribute to strong proton beam defocusing

— Mitigation measures: reduced laser intensity,
double cone walls, heavy ions

— Does the cone-tip B-field & defocusing effect
still persist for mm-scale cones?

*Honrubia, Morace and Murakami, MRE 2, 28(2017)



Putting the pieces together for ignition-scale targets

Novel features:

— Multi-beam laser irradiation in mm-scale cone geometry:
b X IL = 3.0 X 1019 Wcm_z; A=1 um, T7; = 3pS; Orw =

— Utilize ‘best of parametric target scans: rad-hydro computed
pre-plasma, laser profile, foil composition & dimensions
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Numerics:
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— 30k x 30k =9 x 108 grid points; 4x=4,/20
— 2x 109 particles

— 36h on 3k cores of Vega

0.5 ps log(ne/nc)
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Electron density

Rich interaction
physics
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Future refinements:
— collisions, ionization, wall isolation, 3D!
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V. Heating of imploded fuel capsule: ignition threshold

Stefano Atzeni

Empirical scaling*:

DT fuel density Proton beam radius

~1.65 L1l
E,[K]] ~ 25.3( £ ) X max <0.9; . )

300 g/cc 1.17pt

, \ 097
WIth 7ope ~ 20 (300 g/CC)

- Determined from many 100s of transport
calculations using hybrid radiation-hydro code
DUED

B

rp [u

Ignition energy Ejq [K/]
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*revised from: Atzeni et al., Nucl. Fusion 42, L1-L4 (2002) 19
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Proton beam divergence leads to higher ignition threshold L eneroy

Javier Honrubia

T,/ keV
: : EE T | V/em? -I-:D p/[100 g/cm’]
PETRA hybrld COde*' ed 0.0E+00 1.3E+17 2.7E+17 4.0E+17
TNSA proton beam with ™ Energy deposition 0,,=10° 50
T =5 MeV transported
P 40 40
into imploded DT
P = 512 g/cm? 5~ 57
n
standoff distance =1 mm 3 ° é °
& -20 & -20
E, =18kl 0,/,=0° e e
0 50 100 150 200 0 50 100 150 200
Depth [um] Depth [um]

*See, eqg: Honrubia and Murakami, Phys. Plasmas 22, 012703(2015)
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Compression
Laser

BEAM

LPSE, VPIC ToPOLOGY — ™ CHIMERA

— ——p EPOCH

DUED l—=3 EPOCH OSIRIS = = = =3 DUED, PETRA
SMILEI

- FE/Open code
- Cooperation
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Summary

— Early progress on key open physics questions of Proton Fast Ignition:
- Isochoric compression of DT fuel capsule with inserted cone
- Strategies identified for optimal proton beam conversion efficiency
- Proton beam focusing in full-scale cone targets: control of return currents
- Heating and ignition of compressed DT fuel: sensitivity to beam properties

— (Pre-) exascale computing resources(100s of millions of core-h) will play a vital
role in de-risking inertial fusion power plant design

- Future sub-scale, high repetition-rate experimental facilities will enable
quantitative calibration and refinement of models
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Thanks to ...

EuroHPC JU for computing time project award EHPC-REG-2023R01-043
hosted by VEGA, Maribor and KAROLINA, Ostrava

Gauss Centre for Supercomputing for computing time on JUWELS (Jlich GCS
Supercomputing Centre)under the project PROFIS

and
The Focused Energy Science Team:

J.d. Honrubia, V. Ospina-Bohorquez, A. Mateo-Aguaron, S. Atzeni, M.
Bronner, L. Savino, X. Vaisseau, D. Callahan, W. Theobald, P. Patel, M. Roth
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