

Multi-scale simulations of proton-driven fast ignition of inertial fusion targets

Paul Gibbon, FusionHPC Workshop Barcelona 29-30 November 2023

The National Ignition Facility shots that changed the game

Laser-driven fusion has been successfully achieved and scientifically validated

August 8th, 2021

NIF validated the **fundamental science** of Inertial Fusion Energy (IFE) by demonstrating a **propagating burn wave**

>1.3 MJ of fusion yield was produced

70% conversion of laser energy to fusion energy

2) December 5th, 2022

NIF validated the commercial viability of IFE by achieving net energy gain (fusion energy/laser energy >1)

>3.2 MJ of fusion yield was produced

160% conversion of laser energy to fusion energy

A power plant will need higher gain and higher robustness compared to NIF

NIF Ignition

Gain ~ 2x

Single shot

Higher gain and physical robustness Inertial Fusion Energy

10 Hz

IFE power plant: we need a target gain of ~ 100 at 10 Hz

- Energy to run the laser is E_L/η_L
- Energy produced is $E_{\rm L}$. G. η_t
- → If we keep recirculating power frac. to less than 25%, then $\eta_L \eta_t G > 4$
- → If $\eta_{th} \approx 0.4$, then, η_L . G > 10
- → If $\eta_L \approx 0.1$, then, G > 100
- → For ~ 750 MW out to the grid, then repetition rate needs to be about **10 Hz** for 2.5 MJ laser

How do we achieve this?

Focused Energy was founded in July 2021

Our goal: demonstrate commercially viable inertial fusion energy

FE's strategy is based on the Proton Fast Ignition concept *

- Two sets of lasers are needed with different requirements for compression and heating
 Devoice of compression and ignition largely.
 - Physics of compression and ignition largely understood, but needs verifying at scale

A sub-scale implosion facility will provide a key de-risking step towards a Fusion Power Plant

1ω ignitor beams

Phase I

- 30 kJ (LP) + 6 kJ (SP) beams based on liquid-cooled flashlamps (shot/5 min)
- DT wetted foam targets
- Capability for 100+ shots/day

Phase II

- Upgrade with additional 30 kJ (LP) + 6 kJ (SP) diode-pumped beams (10 Hz)
- Target injector and tracking, beam steering for 10 Hz operation
- Integrated de-risking at sub-scale

Target physics design

Compression requirements

- → 2.5 g DT fuel \Rightarrow 200 MJ yields
- → Laser energy (total) < 2 MJ</p>
- → ρ > 300 g/cm³, ρ R > 2.5 g/cm²

Compression design

- CH ablator, DT-wetted foam, with clean inner DT ice or liquid
- → $E_{LP} \sim 1.5 \text{ MJ}$ at $\lambda_{LP} = 0.5 \mu \text{m}$
- → 24-48 beam ports
- → LPI mitigation techniques
 ⇒ laser and target design

Ignitor requirements*

- → ~ 20 kJ proton beam energy
- → ~ 20 µm focal radius
- → < 20 ps pulse duration</p>

Ignitor design

- Maximise conversion efficiency:
 ⇒ foil composition and dimensions, laser pulse shaping
- Maximise focusability:
 ⇒ foil shape, laser irradiation profile, cone design to tailor E- & B-fields

PFI modelling requirements: a fusion Exascale Challenge!

- Length scales: nanometres -> millimetres
- Time scales: femtoseconds -> nanoseconds

HPC access through GCS and EuroHPC is helping FE to tackle these computational challenges

HPC Vega, IZUM, Maribor

28 M core-hours*

Karolina supercomputer IT4Innovations, Ostrava 13.4 M core-hours*

JUWELS, Jülich Supercomputing Centre

15 M core-hours

EuroHPC & GCS projects: compression symmetry and physics of proton ignitor beam generation

Performance of EPOCH and FLASH codes on Vega & Karolina

EPOCH T. Arber et al., PPCF **57**, 113001(2015)

I. Cone-in-shell simulation of DT fuel compression with FLASH

Alfonso Mateo Aguaron, Javier Honrubia (UP Madrid & FE)

Simulation details:

- 2D cylindrical geometry for hydro & laser ray-tracing
- Grid domain 1024 μm x 2048 μm; AMR with 1 μm resolution, blocksize 16x16
- ✓ Variable timestep ∆t = 1.3e-13 s; 20h runtime on 512 cores

Mitigation of FLASH technical issues:

- grid remapping to remove numerical Rayleigh-Taylor instabilities
- corrected EOS to avoid negative pressures etc.
- smoothing across material interfaces
- calibration of shock wave propagation via cross-code benchmarking with MULTI-IFE and DUED

II. Proton beam conversion efficiency (CE) modelling

Valeria Ospina-Bohorquez

Parametric scans of CE with 1D surrogate PIC model

Proton layer thickness

Proton layer composition

- At today's prices, each 1% improvement in CE translates to saving of ~ \$50M in the ignitor laser system!

2-D simulations with diagnostic probes to characterize proton beam

 Experimental campaign on proton focusing planned in spring 2024 at Colorado State University (LaserNetUS Program)

III. Proton beam focusing with 'integrated' cone targets*

Javier Honrubia

Multiple effects of cone wall and DT fuel plasma:

- Strong return currents through cone walls and from DT plasma replenish foil electrons and suppress sheath field, reducing proton conversion efficiency
- Magnetic fields generated near cone tip contribute to strong proton beam defocusing
- Mitigation measures: reduced laser intensity, double cone walls, heavy ions
- Does the cone-tip B-field & defocusing effect still persist for mm-scale cones?

Putting the pieces together for ignition-scale targets

Novel features:

- → Multi-beam laser irradiation in mm-scale cone geometry: $5 \times I_L = 3.0 \times 10^{19} \text{ Wcm}^{-2}$; $\lambda = 1 \mu m$; $\tau_L = 3 \text{ps}$; $\sigma_{FW} = 100 \mu m$
- Utilize 'best of' parametric target scans: rad-hydro computed pre-plasma, laser profile, foil composition & dimensions

Numerics:

- → $30k \times 30k = 9 \times 10^8$ grid points; $\Delta x = \lambda_L/20$
- → 2 x 10⁹ particles
- ➡ 36h on 3k cores of Vega

Future refinements:

collisions, ionization, wall isolation, 3D!

IV. Heating of imploded fuel capsule: ignition threshold

19

 Determined from many 100s of transport calculations using hybrid radiation-hydro code DUED

Proton beam divergence leads to higher ignition threshold

Javier Honrubia

*See, eg: Honrubia and Murakami, Phys. Plasmas **22**, 012703(2015) ²⁰

Towards an integrated PFI model framework

Summary

- Early progress on key open physics questions of Proton Fast Ignition:

- Isochoric compression of DT fuel capsule with inserted cone
- Strategies identified for optimal proton beam conversion efficiency
- Proton beam focusing in full-scale cone targets: control of return currents
- Heating and ignition of compressed DT fuel: sensitivity to beam properties
- (Pre-) exascale computing resources (100s of millions of core-h) will play a vital role in de-risking inertial fusion power plant design
- Future sub-scale, high repetition-rate experimental facilities will enable quantitative calibration and refinement of models

Thanks to ...

EuroHPC JU for computing time project award **EHPC-REG-2023R01-043** hosted by VEGA, Maribor and KAROLINA, Ostrava

Gauss Centre for Supercomputing for computing time on JUWELS (Jülich Supercomputing Centre) under the project PROFIS

and

The Focused Energy Science Team:

J. J. Honrubia, V. Ospina-Bohorquez, A. Mateo-Aguaron, S. Atzeni, M. Brönner, L. Savino, X. Vaisseau, D. Callahan, W. Theobald, P. Patel, M. Roth

