= SCITAS

How EUROfusion Advanced Computing Hubs leverage
high-performance computing to accelerate research and
engineering in nuclear fusion

Dr. Gilles Fourestey

N\
Y
-

i
"

=
~—

=

EUROfusion =Pr-L

~—

)

7
\

A

A
—

/

E/;’F'- Simulations/HPC to model the hot plasma
(j}\) = Fusion reactors are extremely complex to build
= - Numerical simulations are an essential tool to help their design

- But are also extremely demanding both in terms of models and resources

Coupling between different fields... .- and HPC motifs and their hardware

implementations
" E I eCt ro mag n etl C IScience ulti- ense [Sparse Spectral IN-Body tructuredUnstructure W
. reas hysics, |linear [linear Methods IMethods Grids IGrids Intensiv
. Plasma thSICS Kinetic, gyr0k|net|C: i altic algeebraalgeebra Fle:T)s Ne-Body) (S-Grids) |(U-Grids) ¢
= TWO_ﬂL”dS cale DLA)KSLA) SM-FFT)
- [Nanoscience X X X X X X
MHD mOdeI.S . . Chemistry X X X X X
= Material science plasma-wall interactic ™o T <1 % X < < <
= Wave physics heating systems 'C T * = - X X
. . . ombustion| X X X X X
= Engineering not included! Rewophysic] X | X X = = = < =
o . o Biology X X X X
with different space/time scales... s I < < < <
System @§General | High High High High High Irregular High
Balance [JPurpose|Speed |PerformancegnterconnectfPerformancd Speed Data and Storage
W Implicationspalanced] CPU, | Memory Bisection Memory CPU, Control and
H System | High bandwidth High Flow Network
Time [S] 0-10 1 0-8 1 0-6 1 0_4 1 0-2 1 00 1 02 10 S FIO%)/S ‘ ‘ Floi/s ba::iwidtll
Space [m] [106 - 102 J 100 1oj L Luis
Macrosopic stabijlity

kTransport Currentdiffusion

Turbulence

= SCITAS

EPFL Fusion Timeline
2
@)

e

TCV@EPFL JT-60: 100x TCV ITER: 500x TCV DEMO: 5000x TCV

0=125 0=10, 500MW 0=25,2000MW

Materials under neutron ‘ 0
IR g
PN
Fusion is
practical, Power Plant
Fusion is attractive *
feasible

Fusion is Fusion is
plausible commercially
exploited
- - sex u
PO A A
M) T-60SA
&y, ©
> >
Sy =2020 =2025 ~2050

" SCITAS Oberation

EPFL Fusion Timeline

(’(fi‘;\\
\:54)')
TCV@EPFL JT-60: 100x TCV ITER: 500x TCV DEMO: 5000x TCV
100 Teraflops 0=125 0=10,500MW 0 =25, 2000MW
10 Petaflops 100 Petaflops 1Exaflops
Materials under neutron ‘ Q ‘
St O un z N
Fusion is =
practical, Power Plant
Fusion is attractive *
feasible

Ricci at al. Fusion is Fusion is
(SPC-EPFL) plausible commercially
exploited
9

=2025 =2050

" SCITAS Oberation

=rr. Unprecedented level of heterogeneity

0O
&

= GPUs are dominating the Top500

= but the CPU/GPU combo is rarely
the same vendor-wise

intel. intel.

= And there's more to come:

IiV'f,’e’/%X luikily SIS
Core Fapris” TRl (@ LEONARDO

CINECA

= SCITAS

Sierra - Bl

United States

Rmax Rpeak Power
Rank System Cores (PFlop/s) | (PFlop/s) | (kW)
1 8,699,904 1,194.00 1,679.82 |22.703
DOE/SC/0ak Ridge National Laboratory
United States.
2 4,742,808 585.34 1,089.33 | 24,687
United States
2 Eagle - M n Platinum 8480! 1,123,200 561.20 846.84
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft
Microsoft Azure
United States
4 Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442,01 537.21 |29.899
Tof Fujitsu
mputational Science
5 Cray EX235a, AM 2,752,704 379.70 53151 §7.107
z, AMD Instinct M
6 1,824,768 23870 30447 | 7.404
HDR100 Infiniband, EVIDEN
EuroHPC/CINECA
Italy
7 System AC922, IBM POW 2,414,592 148.60 20079 10,09
DOE/SC/0ak Ridge National Laboratory
United States
8 680,960 138.20 26557 | 2,560
i) Eos NVIDIA DGX SuperPOD - NVIDIA DGX H100, Xeon 485,888 121.40 188.65
Platinum 84 GHz, NVIDIA H100, Infiniband
ND
NVIDIA Corporation
United States
10 BM P 1,572,480 94.64 12571 |7.438

£PFL EUROfusion Advanced Computing Hubs

EUROfusion is a consortium of national fusion research

institutes
- 30research groups(25in Europe) VTT
- Founded in 2014, HQ at IPP %
Aiming at helping deliver fusion energy. “]p Data Management

E-TASC - Theory and Advanced Simulation Coordination HPC
between:

- 14 TSVV(Theory, Simulation, Validation and

Verification) projects
- 5 ACH(Advanced computing Hubs) EPFL
HPC

In particular, 3 HPC ACHs were created in order to help
building power plants through numerical simulations

- Extension of HLST (Roman Hatsky/IPP)

- Develop efficient, reliable tools

- Modernize and industrialize research codes

& [FPILI

Barcelona
In order to gain insight and predict fusion experiments @ Supercomputing » s e o
(ITE R, J TBO_SA' DEMO...) Cenr/IL:I/\/;c/conal de Supercomputacién Code |ntegratlon

= SCITAS

https://en.wikipedia.org/wiki/Nuclear_fusion_power

£PFL EUROfusion Advanced Computing Hubs
(4

- TSVV
E-TASC - Theory and Advanced Simulation: coordination between
m TSVV: performresearch and channel science and engineering
into scientific codes
m ACH: modernize and industrialize research codes into HPC
standards

According to EUROfusion’s Software Standards:

m SOFTWARE ENGINEERING: Version control, coding standards, test-driven.

m CODEINTERFACES: Graphical User Interface, post-processing and visualisation
tools, interfaces to the IMAS Data Dictionary.

m VVUQ: Code Verification and Validation, reports/papers available, validation
against experimental results. ACH

m CODE DISSEMINATION: Up-to-date release version of the source code available,
trainings provided.

m CODE DOCUMENTATION: High-quality technical documentation and user manual
available.

m USER SUPPORT: Responsive support team in place, tools for managing support
requests.

AMDZ |nte| @ nviDia.

= SCITAS

=L Plasma Physics Codes

=~

/N

©

Plama simulation codes are research codes:

mostly CPU-only,

written in C,C++ and Fortran,

MPI and/or OpenMP,

under active development by physicists,
mathematicians, etc...

General porting rules:

m least modifications of the code/no rewrite
m ‘maximum’performance
m portability/no specific target

= SCITAS

GRILLIX W

GyselaX @ irfm
_

ORB5 =PrL

Soledge3X @ |rfm

ASCOT5 A
CAS3D W
FELTOR 1
GBS EPFL
GENE W

E/,'ZFL How to transition towards GPU codes?
77N\

@)
& There are 3 main approaches:
m Library encapsulation(e.g. Kokkos, PETSc, AmgX, FFTW, BLAS/Lapack...):
- easy touse, good out-of-the-box performance
- not applicable to all codes and might necessitate some rewrite (e.g. data
structures)
m Cuda/ROCm/SYCL: low level high performance
- best performance
- not portable, necessitate heavy rewrite
m Pragma directives(OpenMP offload / OpenACC)
- portable, relatively easy to use

- some code rewrite and possible algorithmic modifications

= SCITAS

E/EFL How to transition towards GPU codes
@)

Ny
= There are 3 main approaches:

E E E E =
ms

E = ®E =
m
U
|
r

= SCITAS

=PFL GBS - Global Braginskii Solver (Ricci et al. EPFL)
O
=

GBS is used to study plasma turbulence in the tokamak
boundary

Plasma model based on drift-reduced Braginskii equations
Single species kinetic neutral model
Time evolution: 4th order Runge-Kutta algorithm

Spatial discretisation: 4th order finite centered
differences

HPC in GBS:

= Plasma model based on drift-reduced Braginskii equations
= Written in Fortran90 + MPI, CUDA for NVIDIA GPU
= Dependencies: MPI, HDF5, PETSc, CUDA

Main bottlenecks:

- RHS computation (stencil operations)
- Poisson and Ampere solvers

11
® SCITAS

=pFL GBS: TCV on Piz Daint@CSCS (Cray XC40)
®)
\:E—/J B Oldgbs W Newgbs = Speedupold = Speedupnew = Perfect Speedup

125.0

Ist step: sparse linear solver library
m Moving from UMFpack to PETSc
65X performance increase using 32 nodes

100.0

Old gbs

50.0

2ns step: GPU implementation

m RHS: stencil operations using CUDA kernels
m Solver: PETSc or AMGX on GPU

Setup: TCV, 2D poisson, Ttimestep
Outcome: currently, allocation of e Nx=720,ny=960,nz=1

m 500M core-hours e Solver: BiCGStab

m 5MGPU-hours e Preconditioner: jacobi
[J
[J

Xeon E5-2690V3@2.6Ghz, 64GB ram,

on multiple Tier-0 HPC systems Aries interconnect

= SCITAS

=pr. Leonardo vs LUMI-C - TCV@0.9T

O
N_/,
TTS for 100 plasma step
B tts(lumi) [tts(leonardo)
1250.00
1042.59
1000.00
750.00
T
£
£ 500.00

217.04 eeR

250.00 127.04 135.67

91.95

0.00

2 4 8 16

Leonardo is 2x to 3x faster than LUMI-C
(@ LEONARDO LUMI

CINECA

intel. <o AMDZ

= SCITAS

= (Grid size:
« Nx=300
- Ny=600
« Nz=128
= 100 plasma steps
= No neutrals
nodes Px Py Pz
2 8 1 16 1 |2
4 8 1 16 1 |4
8 8 1 6 1 |8
16 8 1 16 1 |16

=PrL ASCOT5 J. Varje, S. Akaslompolo (ASCOT group - Aalto University) A
/7’§ Aalto University
0

= ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices

= The code uses the Monte Carlo method to solve the distribution of particles by following their
trajectories.

* The evolution of the distribution function for a test particle species ais described by the
Fokker-Planck equation 5

ot
and approximated by the Langevin equation for a large number of markers that represent the
distributed function: : :
dz = [z + a(z,t)| dt + o(z,t) - dW |
= The particles undergo collisions with a static Maxwellian \\
background plasma
= The detailed magnetic fields and the first wall can be
fully 3D

+V Vot 2 (B+vxB)-Vofo= Y Vs [awfa = Vv - (Davfa)]
“ b

o RRERY

= MPI + OpenMP (task-based) and highly vectorized

i

I
g

= SCITAS

=pFL Moving to GPUs: OpenMP-0Offload hardware mapping A
/;?\\\
W_,) = MPI+GPU |evels of parallelism:

‘
{

» Message Passing: particles distributed among MPI tasks, fields replicated
* GPU OpenMP-offload based - 2 levels of parallelism map to:
= Marker queues distributed over OpenMP teams

= Each marker is distributed over OpenMP team threads

(" : ™
MPI i OpenMP (Shared memory) - Offload
Marker populationi
Marker queue Threads
Processes: SEMD-struetare
; A A A
i | (AL S (@] [T
Fhreads B B B
Nod J Teams A - Ty, i At y f@)l |Tes
odes ! Vectorization -
; ~ C (i C C
: CUDA Threads % At f(z$) B
—Logiealcoros. D D D
~ CUDA Blocks Tk Atf|f(z) k+1

= SCITAS

EPFL ASCOTS5 - GPU version

{\E‘fﬂ = MPI+GPU |evels of parallelism:
» Message Passing: particles distributed among MPI tasks, fields replicated
* GPU OpenMP-offload based - 2 levels of parallelism map to:

= Marker queues distributed over OpenMP teams

= Each marker is distributed over OpenMP team threads

L2

8.

#pragma omp target teams distribute
L_1 for(int iprt = 0; iprt < NbParticules ; ip = NSIMD) {

..some work..

particle simd fo p; //new set of NSIMD particles
#pragma omp parallel for simd

for (int i=0; i< NSIMD; i++) {\

p.running[i] = 0;

..some work..
#pragma omp parallel for simd—~—’—_~—_~_~——~_~—_~_
for(int i=0; i< NSIMD; i++) {

..some work..

= SCITAS

OpenMP 4.5 Execution Model

HOST to TARGET OFFLOADING

#omp target

#omp teams

M M M
e]

#omp parallel for

Hohrh @

A

Aalto University

Womptarget
// target region

#omp teams

cPrL ASCOT5 Benchmarks A

\ Aalto University

/
®

e

ASCOT5

m100@CINECA

Phoenix@EPFL

Phoenix@EPFL
Helvetios@EPFL
Jed@EPFL

= SCITAS

“May2022" Benchmark, comparison with different compilers/platforms

gccllon x86 + v100 (Phoenix@EPFL)

XL compilers +v100(m100@Cineca)

intel compilers on skylake and icelake (Jed@EPFL, ASCOT5 cpu-only)
gccl1l with OpenACC on x86 + v100 (Phoenix@EPFL)

TTS[s] may2022_2dwall_go_analyticB
markers: 10000 100000

Platform Compiler
OMP Offload 46 473 Power9 +v100 XL compilers
OMP Offload 232 2143 6138 gold +v100 gcc 1l
OpenACC 48 261 6138 gold + v100 gee Tl
OMP (cpu-only) 87 860 2x Gold 6140 intel compilers

OMP (cpu-only) 31 318 2x Platinum 8360Y intel compilers

ePFL ASCOT5-GPU with OpenACC/0penMP offload interop A

¢

\:.//

)

Moving to OpenACC

= SCITAS

OpenACC is more mature than OpenMP offload
gcc supports it along OpenMP offload
(-fopenacc or -fopenmp)

OpenACC and OpenMP offload are very similar

OMP_L1

for(int iprt = 0; iprt < NbParticules ; iprt += NSIMD) ({
..some work..
particle simd fo p; //new set of NSIMD particles

OMP_L2

for (int i=0; i< NSIMD; i++) {
p.running[i] = 0;
..some work...

OMP_L2

for (int i=0; i< NSIMD; i++) {
..some work...

Aalto University

#pragma once

#define STRINGIFY(X) #X

#define MY_PRAGMA(X) _Pragma(STRINGIFY(X))

#if !defined(_OPENMP) && !defined(_OPENACC)

#warning "No Openmp or OpenACC"

#define OMP_L1

#define OMP_L2

#define DECLARE_TARGET

#define DECLARE_TARGET_END

#endif

#ifdef _OPENMP

#warning "OpenMP"

#define OMP_L1MY_PRAGMA (omp distribute parallel for)
#define OMP_L2 MY_PRAGMA (omp simd)

#define DECLARE_TARGET MY_PRAGMA(omp declare target)
#define DECLARE_TARGET_END MY_PRAGMA(omp end declare target
#endif

#ifdef _OPENACC

#warning "OpenACC"

#define OMP_L1MY_PRAGMA (acc loop gang worker)

#define OMP_L2 MY_PRAGMA (acc vector)

#define DECLARE_TARGET MY_PRAGMA(acc routine vector)
#define DECLARE_TARGET_END MY_PRAGMA(warning "ACC")
#endif

=L New algorithmic approach

e,

\

= SCITAS

"4

m The original implementation is not GPU-friendly:
o one very large kernel

o events depend on the previous event

m Implement a new version by splitting the initial kernel:

o Parallelize over events instead of execute all particles
o small kernels independent of each other

#pragma acc loop
for each particle
while particle still running
step forward();
end condition time();
diag();

end while
end for

Initial method

while particles are still running

#pragma acc loop

for each particle still running
step forward();

#pragma acc loop

for each particle still running
end condition time();

#pragma acc loop

for each particle still running
diag();

end while

Event-Based

A

Aalto University

19

=PrL. Benchmarks
(’(fi‘;}\
@)

m “Sept2023”"Benchmark:

A

Aalto University

o Jed: 2x Platinum 8360Y, intel/2021.6.0, -Ofast -qopt-zmm-usage=high -march=native
o Leonardo: A100, nvhpc/23.1, -03 -acc -Minfo=accel -gpu=managed

o Time-to-Solution, lower is better

1M markers Oct2023 benchmark

B Jed@EPFL (Icelake 2x36 cores) [l Leonardo (A100) Scaling Jed == Scaling Leonardo

2500.0 40.0
2000.0 20.0
@
[~ 10.0
§ 15000 &
=
s 6.0
2 1000.0 40
L
£
=
500.0 20
00 10

1 2 4 8 16 32

Number of nodes or A100

= SCITAS

10M markers Oct2023 benchmark

B Jed@EPFL (Icelake 2x36 cores) [Leonardo (A100)
12500.0

10039.1
10000.0

7500.0

5000.0

2460.5

2500.0 1627.4
1264 §74.0

Time To Solution [s]
=
O
@®
o
o

627.464.0 247.8
0.0

1 2 4 8 16 32

Number of nodes or A100

20

=pr. Conclusions

0O
&
| |
H
H
| |

= SCITAS

EUROfusion has created an framework to improve high performance

scientific software development in order to help build fusion reactors
- TSVV to develop research codes and validate them on current reactors
- ACH to industrialize and accelerate those codes to help build future reactors
There are several ways to do that:
- Optimized librairies are the best way to get performance out-of-the box
- CUDA/ROCm/SYCL will give best performance but not portable
- OpenMP offload/OpenACC directives
Directive-based approaches are sound, but
- OpenMP Offload is probably the best choice but it is not mature
- OpenACC is very fast but is not supported by all
Whatever the choice, expect at least some rewrite
- the highest quality the code is, the easiest it will be

=PrL

(®)
&

e

Thank you!

