
■ SCITAS

How EUROfusion Advanced Computing Hubs leverage
high-performance computing to accelerate research and

engineering in nuclear fusion

Dr. Gilles Fourestey

■ SCITAS

Simulations/HPC to model the hot plasma
▪ Fusion reactors are extremely complex to build
▪ Numerical simulations are an essential tool to help their design
▪ But are also extremely demanding both in terms of models and resources

Coupling between different fields…

▪ Electromagnetic
▪ Plasma physics kinetic, gyrokinetic,
▪ Two-fluids,
▪ MHD models
▪ Material science plasma-wall interactions
▪ Wave physics heating systems
▪ Engineering not included!

with different space/time scales…

… and HPC motifs and their hardware
implementations

■ SCITAS

Fusion Timeline

TCV@EPFL ITER: 500x TCV
Q = 10, 500MW

DEMO: 5000x TCV
Q = 25, 2000MW

JT-60: 100x TCV
Q = 1.25

■ SCITAS

Fusion Timeline

TCV@EPFL
100 Teraflops

ITER: 500x TCV
Q = 10, 500MW
100 Petaflops

DEMO: 5000x TCV
Q = 25, 2000MW
1 Exaflops

JT-60: 100x TCV
Q = 1.25
10 Petaflops

Ricci at al.
(SPC-EPFL)

■ SCITAS

Unprecedented level of heterogeneity

▪ GPUs are dominating the Top500
▪ but the CPU/GPU combo is rarely

the same vendor-wise
▪ And there’s more to come:

■ SCITAS

EUROfusion Advanced Computing Hubs

HPC

Data Management

Code Integration

EUROfusion is a consortium of national fusion research
institutes

- 30 research groups (25 in Europe)
- Founded in 2014, HQ at IPP

Aiming at helping deliver fusion energy.

E-TASC – Theory and Advanced Simulation Coordination
between:

- 14 TSVV (Theory, Simulation, Validation and
Verification) projects

- 5 ACH (Advanced computing Hubs)

In particular, 3 HPC ACHs were created in order to help
building power plants through numerical simulations

- Extension of HLST (Roman Hatsky/IPP)
- Develop efficient, reliable tools
- Modernize and industrialize research codes

In order to gain insight and predict fusion experiments
(ITER, JT60-SA, DEMO…)

HPC

HPC

https://en.wikipedia.org/wiki/Nuclear_fusion_power

■ SCITAS

EUROfusion Advanced Computing Hubs

TSVV

ACH

E-TASC – Theory and Advanced Simulation: coordination between
■ TSVV: perform research and channel science and engineering

into scientific codes
■ ACH: modernize and industrialize research codes into HPC

standards

According to EUROfusion’s Software Standards:

■ SOFTWARE ENGINEERING: Version control, coding standards, test-driven.
■ CODE INTERFACES: Graphical User Interface, post-processing and visualisation

tools, interfaces to the IMAS Data Dictionary.
■ VVUQ: Code Verification and Validation, reports/papers available, validation

against experimental results.
■ CODE DISSEMINATION: Up-to-date release version of the source code available,

trainings provided.
■ CODE DOCUMENTATION: High-quality technical documentation and user manual

available.
■ USER SUPPORT: Responsive support team in place, tools for managing support

requests.

■ SCITAS

■ GRILLIX

■ GyselaX

■ ORB5

■ Soledge3X

Plasma Physics Codes

■ ASCOT5

■ CAS3D

■ FELTOR

■ GBS

■ GENE

Plama simulation codes are research codes:

■ mostly CPU-only,
■ written in C,C++ and Fortran,
■ MPI and/or OpenMP,
■ under active development by physicists,

mathematicians, etc…

General porting rules:

■ least modifications of the code/no rewrite
■ “maximum” performance
■ portability/no specific target

■ SCITAS

How to transition towards GPU codes?
There are 3 main approaches:

■ Library encapsulation (e.g. Kokkos, PETSc, AmgX, FFTW, BLAS/Lapack…):
- easy to use, good out-of-the-box performance
- not applicable to all codes and might necessitate some rewrite (e.g. data

structures)
■ Cuda/ROCm/SYCL: low level high performance

- best performance
- not portable, necessitate heavy rewrite

■ Pragma directives (OpenMP offload / OpenACC)
- portable, relatively easy to use
- some code rewrite and possible algorithmic modifications

■ SCITAS

■ GRILLIX

■ GyselaX

■ ORB5

■ Soledge3X

How to transition towards GPU codes

■ ASCOT5

■ CAS3D

■ FELTOR

■ GBS

■ GENE

There are 3 main approaches:

Library encapsulation (e.g. Kokkos, PETSc, AmgX, BLAS/Lapack…)

Pragma directives (OpenMP offload / OpenACC)

Cuda/ROCm/SYCL

■ SCITAS

GBS - Global Braginskii Solver (Ricci et al. EPFL)

GBS is used to study plasma turbulence in the tokamak
boundary

▪ Plasma model based on drift-reduced Braginskii equations
▪ Single species kinetic neutral model
▪ Time evolution: 4th order Runge-Kutta algorithm
▪ Spatial discretisation: 4th order finite centered

differences

HPC in GBS:
▪ Plasma model based on drift-reduced Braginskii equations
▪ Written in Fortran90 + MPI, CUDA for NVIDIA GPU
▪ Dependencies: MPI, HDF5, PETSc, CUDA

Main bottlenecks:
- RHS computation (stencil operations)
- Poisson and Ampere solvers

11

■ SCITAS

GBS: TCV on Piz Daint@CSCS (Cray XC40)

Setup: TCV, 2D poisson, 1 timestep
● Nx = 720, ny = 960, nz = 1
● Solver: BiCGStab
● Preconditioner: jacobi
● Xeon E5-2690V3@2.6Ghz, 64GB ram,
● Aries interconnect

1st step: sparse linear solver library
■ Moving from UMFpack to PETSc

65X performance increase using 32 nodes

2ns step: GPU implementation
■ RHS: stencil operations using CUDA kernels
■ Solver: PETSc or AMGX on GPU

Outcome: currently, allocation of
■ 500M core-hours
■ 5M GPU-hours

on multiple Tier-0 HPC systems

■ SCITAS

Leonardo vs LUMI-C - TCV@0.9T
▪ Grid size:

• Nx=300
• Ny=600
• Nz=128

▪ 100 plasma steps
▪ No neutrals

nodes Px Py Pz

2 8 1 16 1 2

4 8 1 16 1 4

8 8 1 16 1 8

16 8 1 16 1 16

Leonardo is 2x to 3x faster than LUMI-C

■ SCITAS

▪ ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices
▪ The code uses the Monte Carlo method to solve the distribution of particles by following their

trajectories.
• The evolution of the distribution function for a test particle species a is described by the

Fokker-Planck equation

and approximated by the Langevin equation for a large number of markers that represent the
distributed function:

▪ The particles undergo collisions with a static Maxwellian
background plasma

▪ The detailed magnetic fields and the first wall can be
fully 3D

▪ MPI + OpenMP (task-based) and highly vectorized

ASCOT5 J. Varje, S. Äkäslompolo (ASCOT group - Aalto University)

■ SCITAS

Teams

Threads

~ CUDA Blocks

~ CUDA Threads

- Offload

Moving to GPUs: OpenMP-Offload hardware mapping

▪ MPI+GPU levels of parallelism:
• Message Passing: particles distributed among MPI tasks, fields replicated
• GPU OpenMP-offload based - 2 levels of parallelism map to:

▪ Marker queues distributed over OpenMP teams

▪ Each marker is distributed over OpenMP team threads

■ SCITAS

ASCOT5 - GPU version
▪ MPI+GPU levels of parallelism:

• Message Passing: particles distributed among MPI tasks, fields replicated
• GPU OpenMP-offload based - 2 levels of parallelism map to:

▪ Marker queues distributed over OpenMP teams

▪ Each marker is distributed over OpenMP team threads

#pragma omp target teams distribute
for(int iprt = 0; iprt < NbParticules ; iprt += NSIMD) {

…some work…
particle_simd_fo p; //new set of NSIMD particles
#pragma omp parallel for simd

 for(int i=0; i< NSIMD; i++) {
p.running[i] = 0;
…some work…

#pragma omp parallel for simd
 for(int i=0; i< NSIMD; i++) {

…some work…GPU

L1

L2

L2

■ SCITAS

ASCOT5 Benchmarks

“May2022” Benchmark, comparison with different compilers/platforms
- gcc11 on x86 + v100 (Phoenix@EPFL)
- XL compilers + v100 (m100@Cineca)
- intel compilers on skylake and icelake (Jed@EPFL, ASCOT5 cpu-only)
- gcc11 with OpenACC on x86 + v100 (Phoenix@EPFL)

ASCOT5 TTS [s] may2022_2dwall_go_analyticB

markers: 10000 100000

Platform Compiler

m100@CINECA OMP Offload 46 473 Power9 + v100 XL compilers

Phoenix@EPFL OMP Offload 232 2143 6138 gold + v100 gcc 11

Phoenix@EPFL OpenACC 48 261 6138 gold + v100 gcc 11

Helvetios@EPFL OMP (cpu-only) 87 860 2x Gold 6140 intel compilers

Jed@EPFL OMP (cpu-only) 31 318 2x Platinum 8360Y intel compilers

■ SCITAS

Moving to OpenACC
- OpenACC is more mature than OpenMP offload
- gcc supports it along OpenMP offload

(-fopenacc or -fopenmp)
- OpenACC and OpenMP offload are very similar

#pragma once
#define STRINGIFY(X) #X
#define MY_PRAGMA(X) _Pragma(STRINGIFY(X))
#if !defined(_OPENMP) && !defined(_OPENACC)
#warning "No Openmp or OpenACC"
#define OMP_L1
#define OMP_L2
#define DECLARE_TARGET
#define DECLARE_TARGET_END
#endif
#ifdef _OPENMP
#warning "OpenMP"
#define OMP_L1 MY_PRAGMA (omp distribute parallel for)
#define OMP_L2 MY_PRAGMA (omp simd)
#define DECLARE_TARGET MY_PRAGMA(omp declare target)
#define DECLARE_TARGET_END MY_PRAGMA(omp end declare target
#endif
#ifdef _OPENACC
#warning "OpenACC"
#define OMP_L1 MY_PRAGMA (acc loop gang worker)
#define OMP_L2 MY_PRAGMA (acc vector)
#define DECLARE_TARGET MY_PRAGMA(acc routine vector)
#define DECLARE_TARGET_END MY_PRAGMA(warning "ACC")
#endif

OMP_L1
for(int iprt = 0; iprt < NbParticules ; iprt += NSIMD) {

…some work…
particle_simd_fo p; //new set of NSIMD particles
OMP_L2

 for(int i=0; i< NSIMD; i++) {
p.running[i] = 0;
…some work…

OMP_L2
 for(int i=0; i< NSIMD; i++) {

…some work…GPU

ASCOT5-GPU with OpenACC/OpenMP offload interop

■ SCITAS

■ The original implementation is not GPU-friendly:
○ one very large kernel
○ events depend on the previous event

■ Implement a new version by splitting the initial kernel:
○ Parallelize over events instead of execute all particles
○ small kernels independent of each other

19

#pragma acc loop
for each particle
 while particle still running
 step_forward();
 end_condition_time();
 diag();
 …
 end while
end for

Initial method

while particles are still running
 #pragma acc loop
 for each particle still running
 step_forward();
 #pragma acc loop
 for each particle still running
 end_condition_time();
 #pragma acc loop
 for each particle still running
 diag();

…
end while

Event-Based

New algorithmic approach

■ SCITAS

■ “Sept2023” Benchmark:
○ Jed: 2x Platinum 8360Y, intel/2021.6.0, -Ofast -qopt-zmm-usage=high -march=native
○ Leonardo: A100, nvhpc/23.1, -O3 -acc -Minfo=accel -gpu=managed
○ Time-to-Solution, lower is better

20

Benchmarks

■ SCITAS

Conclusions

■ EUROfusion has created an framework to improve high performance
scientific software development in order to help build fusion reactors

- TSVV to develop research codes and validate them on current reactors
- ACH to industrialize and accelerate those codes to help build future reactors

■ There are several ways to do that:
- Optimized librairies are the best way to get performance out-of-the box
- CUDA/ROCm/SYCL will give best performance but not portable
- OpenMP offload/OpenACC directives

■ Directive-based approaches are sound, but
- OpenMP Offload is probably the best choice but it is not mature
- OpenACC is very fast but is not supported by all

■ Whatever the choice, expect at least some rewrite
- the highest quality the code is, the easiest it will be

■ SCITAS

Thank you!

