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• Current situation:

• With neoclassical optimization turbulence becomes limiting

performance factor in stellarators

• Few data on high-𝛽 turbulence in stellarators

• Global codes necessary but new and demanding tool

• Simulate W7-X UFM configuration

• Interested in KBMs and general high-𝛽 behaviour in W7-X

• Scan beta (EM, linear)

• Observe 𝛾 and 𝜔

• Other observations?

• Figure out numerical demand

• Turbulence simulation to observe particle and heat fluxes

What is the goal:
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• W7X-UFM

• Low shear

• QI configuration (not perfect)

• Profiles

• 𝑇𝑒 = 𝑇𝑖 , and finite 𝛻𝑇𝑒,𝑖 : 𝑎/𝐿𝑇 = −4.2

• Flat density

• Scan 𝛽 via increase in density

• Simulation with Euterpe:

• Global, PIC, 𝛿𝑓-code

• Linear, electromagnetic(𝛿𝐵∥ & 𝛿𝐵⊥), collisionless

• Fully gyro-kinetic, but increased mass ratio 𝑚𝑒/𝑚𝑖 = 0.005

• Scale in simulation is 𝑘⊥𝜌𝑖~0.5 − 1.1

Profiles & configuration

Shift density
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o As 𝜷 increases:

• Stabilization of ITG until 𝛽 ≈ 2.5% − 3.0% = 𝛽𝑐𝑟𝑖𝑡

• Destabilization of electron rotating mode for 𝛽 > 𝛽𝑐𝑟𝑖𝑡

o Furthermore:

• Transition back to ITG for :

1. 𝑎0/𝐿𝑇𝑒 = 0 and

2. No particle trapping via 𝐹𝑚𝑖𝑟𝑟𝑜𝑟 = 0

• Simulation of lower mode numbers (𝑘⊥𝜌𝑖~0.0 − 0.5) 

=> KBM

• Strong destabilization for 𝑎0/𝐿𝑇𝑖 = 0 at 𝛽 = 0%

Physics
𝛾a/LTi=0 = 0.36𝛾a/LTi=0 = 0.48
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• Track ratio of perturbed magnetic to electric energy

𝐑 =
𝑾𝒎

𝑾𝒆
= ∫ 𝑱∥𝑨∥𝒅𝑽/∫ 𝝆𝝓𝒅𝑽

• R increases with 𝛽

• Transition to electron rotating mode when R > 1

• For 𝑎0/𝐿𝑇𝑒 = 0, no trapping and low modes numbers R 

decreases below 1 coincides with transition to

ITG/KBM

• It seems that 𝑅 ∝ exp(1.95𝛽)

• Phase space at 𝜷 = 𝟒%:

• Ions only show Landau damping and no trapping

effects

• Strong trapped electron drive but Alfvén resonance for

no trapping

Energy and Phasespace

𝑣/𝑣𝑡ℎ𝑒~9/4
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• Stabilization of ITG with increasing 𝜷 for 𝜷 < 𝜷𝒄𝒓𝒊𝒕

• For 𝜷 > 𝜷𝒄𝒓𝒊𝒕:

• Transition to electron rotating mode

• Further destabilization with β

• Mode becomes more magnetic than electrostatic at 𝛽𝑐𝑟𝑖𝑡

• Strong drive by trapped electrons

• Electron rotating mode vanishes for: no trapping, 𝑎/𝐿𝑇𝑒 = 0, low mode numbers (𝑘⊥𝜌𝑖⪅0.5, KBM)

• Simulations with Gene (fluxtube, K. Aleynikova) of case show same physics

• Conclusion: 𝛁𝐓𝐞-driven electromagnetic TEM 

• Unclear parity: ballooning vs tearing

Physics summary
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• HSK configuration [Roberg-Clark, Xanthopoulos, Plunk -

2022]

• Optimized quasi-helical stellarator

• Focus on high 𝑎/𝐿𝑇 ȁ𝑐𝑟𝑖𝑡 => decreased ITG heat flux, less 

MHD stable

• 𝑁 = 4; 𝐴 = 4.1; 𝑎0 = 0.95𝑚; 𝐵0 = 1𝑇

• Simulation with Euterpe:

• Non-linear, electromagnetic (𝛿𝐵∥ & 𝛿𝐵⊥), collisionless

• Fully gyro-kinetic, but increased mass ratio 𝑚𝑒/𝑚𝑖 = 0.005

• 𝑇𝑒 = 𝑇𝑖 , finite 𝛻𝑇𝑒,𝑖 : 𝑎/𝐿𝑇 = −4.23 but flat density

• 𝛽 = 1.31%

HSK Turbulence

Iota
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• First ITG with 𝜸𝑰𝑻𝑮 = 𝟎. 𝟏𝟗𝟐𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟕𝟔 => 𝒌⊥𝝆𝒊~𝟎. 𝟔

=> close to linear GENE in paper

• Then BM with 𝜸 = 𝟎. 𝟑𝟖𝟓𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟖 => 𝒌⊥𝝆𝒊~𝟎. 𝟎𝟔

• Why BM and not KBM? 

1. Cas3D MHD stability code (C. Nührenberg): (𝑚0, 𝑛0) = (8, −12)

same as in Euterpe, but 𝛾𝐶𝑎𝑠3𝐷 = 0.75𝑎0/𝐶𝑠

2. 𝑘⊥𝜌𝑖~0.06 too small for KBM

• Turbulence saturation by zonal flow => observation of flows:

• Heat flux oscillating back and forth due to oscillating particle flux: 

finite 𝛻𝑛 => turbulence + outwards flux => 𝛻𝑛 = 0 => curvature pinch 

(inward particle flux) => finite 𝛻𝑛

HSK Turbulence

ITG
BM

Saturati

on by

zonal 

flow
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• First ITG with 𝜸𝑰𝑻𝑮 = 𝟎. 𝟏𝟗𝟐𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟕𝟔 => 𝒌⊥𝝆𝒊~𝟎. 𝟔

=> close to linear GENE in paper

• Then BM with 𝜸 = 𝟎. 𝟑𝟖𝟓𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟖 => 𝒌⊥𝝆𝒊~𝟎. 𝟎𝟔

• Why BM and not KBM? 

1. Cas3D MHD stability code (C. Nührenberg): (𝑚0, 𝑛0) = (8, −12)

same as in Euterpe, but 𝛾𝐶𝑎𝑠3𝐷 = 0.75𝑎0/𝐶𝑠

2. 𝑘⊥𝜌𝑖~0.06 too small for KBM

• Turbulence saturation by zonal flow => observation of flows:

• Heat flux oscillating back and forth due to oscillating particle flux: 

finite 𝛻𝑛 => turbulence + outwards flux => 𝛻𝑛 = 0 => curvature pinch 

(inward particle flux) => finite 𝛻𝑛

HSK Turbulence

ITG
BM

Saturati

on by

zonal 

flow
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• First ITG with 𝜸𝑰𝑻𝑮 = 𝟎. 𝟏𝟗𝟐𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟕𝟔 => 𝒌⊥𝝆𝒊~𝟎. 𝟔

=> close to linear GENE in paper

• Then BM with 𝜸 = 𝟎. 𝟑𝟖𝟓𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟖 => 𝒌⊥𝝆𝒊~𝟎. 𝟎𝟔

• Why BM and not KBM? 

1. Cas3D MHD stability code (C. Nührenberg): (𝑚0, 𝑛0) = (8, −12)

same as in Euterpe, but 𝛾𝐶𝑎𝑠3𝐷 = 0.75𝑎0/𝐶𝑠

2. 𝑘⊥𝜌𝑖~0.06 too small for KBM

• Turbulence saturation by zonal flow => observation of flows:

• Heat flux oscillating back and forth due to oscillating particle flux: 

finite 𝛻𝑛 => turbulence + outwards flux => 𝛻𝑛 = 0 => curvature pinch 

(inward particle flux) => finite 𝛻𝑛

HSK Turbulence

ITG
BM

Saturati

on by

zonal 

flow
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• First ITG with 𝜸𝑰𝑻𝑮 = 𝟎. 𝟏𝟗𝟐𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟕𝟔 => 𝒌⊥𝝆𝒊~𝟎. 𝟔

=> close to linear GENE in paper

• Then IBM with 𝜸 = 𝟎. 𝟑𝟖𝟓𝒂𝟎/𝑪𝒔, 𝒎𝟎 = 𝟖 => 𝒌⊥𝝆𝒊~𝟎. 𝟎𝟔

• Why IBM and not KBM? 

1. Cas3D MHD stability code (C. Nührenberg): (𝑚0, 𝑛0) = (8, −12)

same as in Euterpe, but 𝛾𝐶𝑎𝑠3𝐷 = 0.75𝑎0/𝐶𝑠

2. 𝑘⊥𝜌𝑖~0.06 too small for KBM

• Turbulence saturation by zonal flow => observation of flows:

• Heat flux oscillating back and forth due to oscillating particle flux: 

finite 𝛻𝑛 => turbulence + outwards flux => 𝛻𝑛 = 0 => curvature pinch 

(inward particle flux) => finite 𝛻𝑛

HSK nonlinear Turbulence

ITG
IBM

Saturati

on by

zonal 

flow
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• Testing numerical convergence:

• For 𝛽 < 𝛽𝑐𝑟𝑖𝑡 < 𝛽: between cases 1,2,3 

and ”skin depth” no change in 𝛾 and 𝜔 => 

cheap far away from transition

• For 𝛽 ≈ 𝛽𝑐𝑟𝑖𝑡: large differences in 𝛾, 𝜔, R 

and 𝛽𝑐𝑟𝑖𝑡 => large resolution necessary

• Testing true electron mass at 𝛽 = 4%: 𝜔

increases by factor 2. 𝛾, R and phase 

space similar are almost the same. ~24x 

more expensive than case 1

• Good news: EM-simulations rel. Cheap

far away from mode transitions

• Bad news: For 𝜷 ≈ 𝜷𝒄𝒓𝒊𝒕 expensive due 

to coexistence of two modes

Numerics

Case Timestep

[𝛀𝐜𝐢]

Markers

[1E6]

Grid

[𝑵𝒔x𝑵𝜽x𝑵𝝋]

Core hours

per sim.

Cost rel. 

to case 1

1 0.5 60 64x128x64 4608 1

2 0.1 60 64x128x64 25398 6

3 0.1 160 64x128x64 55296 12

Electron

skin depth

0.3 160 512x128x64 331776 72

True mass 0.3 160 64x128x64 110592 24

6 0.3 160 64x128x64 55296 12
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• Scanned W7-X UFM in 𝜷 using Euterpe

• Found destabilization of high-𝜷 TEM at ion scale for 𝜷 > 𝜷𝒄𝒓𝒊𝒕 ≈ 𝟐. 𝟓% as indicated by:

• Flip of 𝜔 from ion to electron diamagnetic direction

• Strong drive by trapped electrons in PS 

• Driven by 𝛻𝑇𝑒 but stabilized by 𝛻𝑇𝑖

• Ratio of energies 𝑊𝐴∥/𝑊𝜙 > 1

• Numerically cheap for 𝜷 ≠ 𝜷𝒄𝒓𝒊𝒕, but expensive for 𝜷~𝜷𝒄𝒓𝒊𝒕 due to competition of modes

• Observed turbulent fluxes in optimized HSK configuration

• Next steps: 

• further investigate potential observation of KBMs at lower mode numbers (low 𝒌⊥𝝆𝒊)

• Non-linear simulations to observe fluxes and see whether KBMs or high-𝛽 TEM dominates

Conclusion


