

Performance optimization of EUROFusion HPC code ERO2.0

Joan Vinyals-Ylla-Català Marta Garcia-Gasulla

Barcelona Supercomputing Center Centro Nacional de Supercomputación

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Context

- EuroFusion Advanced Computing Hub at BSC
 - Provides computer science, performance, optimization and software engineering support to EuroFusion program
 - 3 BSC teams and departments involved
 - STELLA, SPICE, KNOSOS, and **ERO2** among others
- In collaboration with ERO2.0 developers from JSC, at TSVV-7

ERO2

- Monte Carlo 3D code for global erosion and deposition modelling
- Written in C++ and parallelized using MPI and OpenMP
- Set up
 - Input files from:
 - <u>https://jugit.fz-juelich.de/ero/runs/jromazanov/jet/run03/seq01</u>
 - JET simulation
 - Random Seed set to false
 - 500k Particles
 - 250 maxMpiChunkSize
 - 0.1 maxTracingTime
- More information on the simulation setup:
 - Juri Romazanov <j.romazanov@fz-juelich.de>

Environment

- Intel Compiler 2017.4
- MPI: IMPI 2017.4
- Libraries:
 - MKL 2017.4
 - HDF5 1.8.19
 - BOOST 175.0Z
- For performance analysis:
 - Extrae to get traces
 - Paraver to visualize traces

Structure - 1 step execution

Center

Centro Nacional de Supercomputación

Joan Vinyals | 4th Fusion HPC Workshop | Nov. 2023

Structure - 1 step execution

Scalability

Structure - Master/Slave

Structure - Master/Slave

Structure - Master/Slave

RSC

Center

Centro Nacional de Supercomputación

Joan Vinyals | 4th Fusion HPC Workshop | Nov. 2023

Summary structure

Joan Vinyals | 4th Fusion HPC Workshop | Nov. 2023

Efficiency metrics

Nodes:	4	8	16	32		
	192(48x4)[1]	384(96x4)[2]	768(192x4)[3]	1536(384x4)[4]		Very low global eff. due
Global efficiency -	80.20	70.95	57.81	39.51	- 100	to bad parallel efficiency.
Parallel efficiency -	80.20	70.59	58.33	40.43	- 80	
Load balance -	91.52	86.73	76.55	62.27		
Communication efficiency -	87.64	81.39	76.21	64.93	gge(,	
Computation scalability -	100.00	100.52	99.10	97.73	cents	Very good computation
IPC scalability -	100.00	99.94	100.23	100.35	Pe	scalability
Instruction scalability -	100.00	100.58	98.91	97.67	- 20	Scalability.
Frequency scalability -	100.00	100.00	99.96	99.71	0	
	192(48x4)[1]	384(96x4)[2]	768(192x4)[3]	1536(384x4)[4]	Ū	Very low MPI Parallel Eff
Hybrid Parallel efficiency	80.20	70.59	58.33	40.43	- 100	Due to Load Balance and
MPI Parallel efficiency	88.95	79.11	66.42	47.71	- 80	Serialization
MPI Load balance	- 95.46	90.80	84.69	68.30		
MPI Communication efficiency	93.18	87.13	78.42	69.86		
Serialization efficiency	93.20	87.18	78.53	70.03		
Transfer efficiency	99.98	99.94	99.86	99.75	- 40 00	OnenMP Parallel
OpenMP Parallel efficiency	90.17	89.23	87.83	84.74		efficiency shows a
OpenMP Load Balance	95.87	95.53	90.39	91.17	- 20	tondoncy to docrosso
OpenMP Communication efficiency	94.05	93.41	97.17	92.94	- 0	tendency to decrease.

Load imbalance in detail

Load imbalance

Load Imbalance – grain

Load Imbalance summary

• MPI

- Only present at the end of the execution
- Due to:
 - Heterogeneous distribution of "particle chunks"
 - "Long" particles
- OpenMP
 - Present at the end of every "particle chunk"
 - Due to:
 - Implicit OpenMP barrier at the end of parallel
 - "Long" particles

Proof of concepts

Barcelona Supercomputing Center Centro Nacional de Supercomputación

PoC1: Guided-like particle chunk size

Objective:

- Start with a big granularity so we reduce the overhead and improve OpenMP Load balance.
- Reduce the granularity towards the end to MPI load imbalance.

How we do it:

- We assign the chunk size to be the 1/3 of particles remaining (divided by number of processes).
- We set the minimum to 1.
- Default set to input value

nRemaining = nParticles - nSent
CS_{guided} =max(1, (nRemaining / comm_size) * 0.3)
CS = min(nRemaining, CS_{guided})

PoC1: Guided-like particle chunk size

OMP

Joan Vinyals | 4th Fusion HPC Workshop | Nov. 2023

Finish

Yes

PoC1: Guided-like particle chunk size

PoC2: Dynamic maxTracingTime

Objective:

Detect early that the particle is lost and kill it earlier

How:

We keep track of the average tracing time of particles, and kill particles that are above that threshold

PoC2: Dynamic maxTracingTime

Joan Vinyals | 4th Fusion HPC Workshop | Nov. 2023

Comparing Original, PoC1 and PoC2

Comparing Original, PoC1 and PoC2

For executions with low number of nodes we observe huge improvement with the "dynamic maxTracingTime".

We observe at least a 1.3 speedup for all node counts with PoC1 and 1.35 for PoC2.

Comparing Original, PoC1 and PoC2

PoC3: Outer parallel

MPI load imbalance has been almost completly removed, only OpenMP load imbalance is remaining

Objective: avoid OpenMP threads waiting for other threads

How:

Allow threads to start computing next chunk of particles before all threads finish their particles

PoC3: Outer parallel

Center

Centro Nacional de Supercomputación

PoC 3: Outer Parallel

Summary - Conclusions

- Analyzed and optimized ER2.0 code
 - Main issues affecting efficiency:
 - OpenMP load imbalance
 - MPI load imbalance
 - 3 incremental optimizations:
 - Guided-like distribution of particles among MPI processes
 - Dynamic max tracing time for particles
 - Outer OpenMP loop
 - Speedup achieved 1.35

• Successful interdisciplinary work

Barcelona Supercomputing Center Centro Nacional de Supercomputación

THANK YOU!

joan.vinyals@bsc.es marta.garcia@bsc.es

www.bsc.es