

Gyrokinetic simulations on the formation of Internal Transport Barrier in HL-2A tokamak plasmas

Wenhao Lin(林文浩)¹, J. Garcia², J. Q. Li(李继全)¹, S. Mazzi², Z. J. Li(李正吉)¹, X. X. He(何小雪)¹, X. Yu(余鑫)¹

¹ Southwestern Institute of Physics, Chengdu, China
² CEA, IRFM, Saint-Paul-lez-Durance, France

HPC workshop 2023

Wenhao Lin in HPC workshop, 29th, Nov., 2023

□ Internal transport Barrier (ITB)

- localized region with high ∇T or ∇n
- indicating good confinement in Tokamak
- generated when heat flux is suppressed

Mechanisms for ITB

≈ methods to suppress the micro-instabilities

□ Internal transport Barrier (ITB)

- localized region with high ∇T or ∇n
- indicating good confinement in Tokamak
- generated when heat flux is suppressed

Mechanisms for ITB

- Zonal Flow (ZF), $E \times B$ shear ($\gamma_{E \times B}$)
- Effects of Fast Ion (FI)
- β -stabilization ($\beta = 8\pi p/B^2$)

□ Characteristic of ITB in HL-2A tokamak:

High power Neutral Beam Injection (NBI)

- Coexistence with n=1 Long-Lived Mode (LLM)

□ Characteristic of ITB in HL-2A tokamak:

High power Neutral Beam Injection (NBI)

- Coexistence with n=1 Long-Lived Mode (LLM)

Which one is the main cause of ITB triggering in HL-2A? FI, β , $\gamma_{E\times B}$ or LLM?

Are they effective throughout the whole process of ITB formation?

Outline

- Introduction and Simulation setup
- Instabilities analyses
- Transport reduction in non-linear simulations
- A new ITB self-sustainment mechanism
- Summary

Turbulence analyses

Gyrokinetic Simulation

- Turbulence and transport analyzed by performing Gyrokinetic simulations
- 5-dimensional simulation averaging out the particle dynamic associated with the gyromotions
- Solving the 5D gyrokinetic Vlasov equation and the coupled Maxwell equations

Turbulence analyses

□ Simulation parameters

- GENE code [Jenko2000]
- realistic parameters taken at the ITBtriggering (510 ms) and fully formed ITB (650 ms)
- *n_{fi}*, β, and γ_{E×B}, scanned to provide indications for ITB formation [Lin2023nf]

Outline

- Introduction and Simulation setup
- Instabilities analyses
- Transport reduction in non-linear simulations
- A new ITB self-sustainment mechanism
- Summary

Instabilities in linear simulations

• ion-temperature-gradient (ITG) modes, electrostatic (ES) mode excited by ∇T_i and stabilized by fast ion dilution [Tardini2007] and β effects [Weiland1992]

Instabilities in linear simulations

• β -induced Alfvenic (BAE) modes; as identified in [Lin2023cpb], it is an electromagnetic (EM) mode destabilized by ∇T_i in the condition of finite- β

Instabilities in linear simulations

Comments of linear simulations:

- $\gamma_{E \times B}$ is not included; $E \times B$ algorithm not compatible in linear simulation
- Modes are decoupled; zonal mode is stable

Instabilities in non-linear simulations

Non-linearly dominant modes:

- **Zonal Flow (ZF)** (mode with n = 0 and $\omega = 0$, too dominant to plot in the following figures)
- Two high frequency modes at 650 ms whereas none at 510 ms

Instabilities in non-linear simulations

Non-linearly dominant modes:

- $f = f_{lab} nf_{tor}; f_{tor} \approx 7 \text{ kHz}$
- n = 1 LLM and n = 2 BAE; (inconsistence in amplitude may result from the local assumption)

Instabilities in non-linear simulations

Non-linearly dominant modes:

- The free energy of low-n modes derive from ITB-generated
- LLM is sensitive to $\gamma_{E \times B}$

30

25

20

גער^{יי} 15 א

10

5

NBI off

850

800

n=1 LLM

750

700

t_{exp}

[ms]

Outline

- Introduction and simulation setup
- Instabilities analyses
- Transport reduction in non-linear simulations
- A new ITB self-sustainment mechanism
- Summary

□ Spectra of ion heat flux

- Left: nonlinear flux spectra
- Right: total flux and quasilinear flux (dashed line)

□ Spectra of ion heat flux

- ITG modes are responsible for most of the flux
- The low-n EM modes (LLM and BAE) make little contribution directly to the flux in spite of their dominant amplitudes

□ Spectra of ion heat flux

- At 510 ms, the dilution effect of fast ion reduced the flux by linearly stabilizing ITG
- At 650 ms, the flux is reduced mostly by the nonlinear effects of β
- E × B shearing makes little difference

□ Spectra of ion heat flux

- At 510 ms, the dilution effect of fast ion reduced the flux by linearly stabilizing ITG
- At 650 ms, the flux is reduced mostly by the nonlinear effects of β
- E × B shearing makes little difference
- The deviations from quasi-linear prediction indicate the role of ZF and the couplings between modes in reducing the flux.

Wenhao Lin in HPC workshop, 29th, Nov., 2023

Outline

- Introduction and simulation setup
- Instabilities analyses
- Transport reduction in non-linear simulations
- A new ITB self-sustainment mechanism
- Summary

Zonal flow and ion heat flux

Correlations between ZF and ion heat flux

- In the condition of finite-β, ZF develop in a much larger amplitude, reducing drastically the heat flux.
- ZF growth is the key factor of the sustaining of ITB at 650 ms.

Zonal flow and ion heat flux

Correlations between ZF and ion heat flux

But what's the cause of zonal flow growth in the condition of finite- β ?

Wenhao Lin in HPC workshop, 29th, Nov., 2023

Cause of zonal flow growth

Energy source of ZF

$$\frac{dE_n}{dt}|_{NL} = \sum_{n'} T(n,n',t) \propto Re \sum_{n',n'_x,n_x} (n'_x n - n'n_x) \int Jdz \, M\overline{\phi}_1^*|_k \chi_1|_{k'} g_1|_{k-k'}$$

□ Spectra of the ZF energy source

- Without finite β, ZF energies are mostly fed by ITG modes.
- With finite β , the n=1 LLM and n=2 BAE make the most contribution to ZF energy.

A new ITB self-sustainment Mechanism

83

由移典团

核工业西南物理的 Southwestern institute of

Outline

- Introduction and simulation setup
- Instabilities analyses
- Transport reduction in non-linear simulations
- A new ITB self-sustainment mechanism
- Summary

Summary

- The triggering of ITB is caused by the dilution effect of fast ions arising from NBI.
- After the triggering of ITB, the dilution effect alone, however, is incapable to sustain the ITB. Instead, the effects of finite- β are indispensable.
- E × B shear is not found to play a role in any stage of ITB formation.
- A new self-sustainment mechanism of ITB is proposed in which ITB is sustained by the growth of ZF which live on the LLM destabilized by ITB itself.
- The full ITB formation in HL-2A tokamak is thus characterized as self-organized system.

Thank you for listening!

Reference

[1] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000).

[2] G. Tardini, J. Hobirk, V. Igochine, C. Maggi, P. Martin, D. McCune, A. Peeters, A. Sips, A. St[°]abler, J. Stober, and the ASDEX Upgrade Team, Nucl. Fusion 47, 280(2007).

[3] J. Weiland and A. Hirose, Nucl. Fusion 32, 151 (1992).

[4] W. H. Lin, J. Q. Li, J. Garcia, and S. Mazzi, Chinese Physcis B 32, 025202 (2022).

[5] W.H. Lin, J. Garcia, J.Q. Li, S. Mazzi, Z.J. Li, X.X. He and X. Yu, 2023 Nucl. Fusion 63 126048