Simulation and validation of MHD benchmark problems using ALMA

By

Pranav Puthan Oak Ridge Associated universities (ORAU)

Juan Diego Colmenares F., General Atomics Akshay Deshpande, General Atomics Federico Halpern, General Atomics Mark Kostuk, General Atomics

Presented at The 4th Fusion HPC Workshop

November 29-30, 2023

Need for simulation of liquid metal (e.g. PbLi) flows in fusion reactors

Design of liquid metal blankets

- Blankets and integrated first wall is an important component separating the vacuum vessel and plasma.
- Blankets perform 3 main functions
 - Protect the magnets and the vacuum vessel from neutron radiation
 - Produce tritium necessary for continued fusion reaction
 - Convert neutron energy

to heat and transport it away from the vessel

• Design of fusion blankets is a challenge

Reference: Suri et al., Materials issues in fusion reactors, J. Physics Conf. series, 2010

Computational tools for simulation and analysis of blankets

Commercial tools

- COMSOL Multiphysics finite-element solver
- ANSYS FLUENT
- ANSYS CFX
- OpenFOAM open-source

• Application specific

- HIMAG (HyPerComp Incompressible MHD solver for Arbitrary Geometry)

Research codes

- UCLA codes, DNS codes of Satake etc.

ALMA: New exascale solver for arbitrary fluid systems

- Try to cover the entire family tree of fluid models:
 - Two-fluid plasma, MHD, Navier-Stokes, etc
 - ALMA : Anti-symmetric, Large-Moment, Accelerated

Formulation of the anti-symmetric equations

Density equation formulation:

$$\nabla . (\rho \boldsymbol{v}) = \sqrt{\rho} (\nabla . \boldsymbol{v} + \boldsymbol{v} . \nabla) \sqrt{\rho}$$
$$\nabla . (\rho \boldsymbol{v} \boldsymbol{v}) = \frac{1}{2} \sqrt{\rho} (\nabla . \boldsymbol{v} + \boldsymbol{v} . \nabla) \sqrt{\rho} \boldsymbol{v} + \frac{1}{2} \sqrt{\rho} \boldsymbol{v} (\nabla . \boldsymbol{v} + \boldsymbol{v} . \nabla) \sqrt{\rho}$$
$$\frac{\partial}{\partial t} (\rho \boldsymbol{v}) = \sqrt{\rho} \frac{\partial}{\partial t} (\sqrt{\rho} \boldsymbol{v}) + \sqrt{\rho} \boldsymbol{v} \frac{\partial}{\partial t} (\sqrt{\rho})$$

Halpern et al. (2021), Simulation of plasmas and fluids using anti-symmetric models, J. Comp. Phys., 2021

ALMA Solves the antisymmetric MHD Equations

- Antisymmetric formulation of visco-resistive MHD equations
 - Exposes, and tames the dynamic non-linearity by preserving square norms

$$\begin{array}{l} \text{Mass:} \quad \left[\frac{\partial}{\partial t} + (\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla) \right] \sqrt{\rho} = 0 \\ \text{Momentum:} \quad \left[\frac{\partial}{\partial t} + (\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla) \right] \sqrt{\rho} \mathbf{v}. = J \times \frac{B}{\sqrt{\rho}} + \left[-2\sqrt{p}\nabla\sqrt{p} + \nabla \cdot \Pi \right] / \sqrt{\rho} \\ \text{Pressure:} \quad \left[\frac{\partial}{\partial t} + \frac{5}{6}(\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla) \right] \sqrt{3p} = \frac{2}{3} \left(\frac{\nabla\sqrt{3p}}{\sqrt{\rho}} \right) \sqrt{\rho} \mathbf{v} + \left[-\nabla \cdot \mathbf{q} - (\nabla \cdot (\Pi \cdot \mathbf{v}) - \mathbf{v} \cdot (\nabla \cdot \Pi)) + \eta J^2 \right] / \sqrt{3p} \\ \text{Magnetic Field:} \quad \left[\frac{\partial B}{\partial t} + \nabla \times (B \times \mathbf{v}) + \frac{\eta}{\mu_0} (\nabla \times (\nabla \times B)) \right] = 0 \\ \end{array}$$

- ALMA (Antisymmetric Large-Moment Accelerated) in-house code
 - Solves hyperbolic transport equations on heterogeneous HPC systems
 - Originally designed to tackle complex plasma physics problems
 - Central finite-difference schemes retain the conservation properties of the continuous equations (²Halpern et al., 2021)

²Halpern et al.(2021), Simulation of plasmas and fluids using anti-symmetric models, J. Comp. Phys., 2021

ALMA's new anti-symmetry approach results in powerful numerical integration algorithm for arbitrary hyperbolic systems

MHD equations using anti-symmetry formulation

- If anti-symmetry of force operator is retained in discrete space $< \phi |F|\psi>=-<\psi |F|\phi>$
 - Conservation to numerical precision using FD methods
 - Multi-app structure (with native fluid-dynamics capabilities).
 - Modularity and scalability on heterogenous systems

ALMA: Anti-symmetric, Large-Moment, Accelerated

- OO Fortran2008, MPI, OpenMP (CPU), OpenACC (GPU)
 - NVLink, async. comm., buffered, nearest neighbor communication only
 - Only dependencies: BLAS, HDF5 (output), viewable with ParaView
- Finite difference vector calculus operators on simply connected grid
 - 2nd, 4th, and 6th order implemented ... arbitrary order via templating
- Explicit/Implicit RK methods for time integration
 - add arbitrary order via Butcher tableau interface
- Sparse 2D/3D elliptic solver based on geometric multigrid
 - Optional 3rd party interface, e.g. Hypre
- Compressible Navier-Stokes implementation
 - Mach > 0.2; $R_e >> 1$
- Internal boundaries conditions & obstructions via .stl file input
 - No new meshing! automatic immersed boundary method

ALMA was Designed from the Ground Up to Perform on the Newest Leadership Class Systems

 Benchmarks in current petascale clusters show excellent (better than ideal) strong scaling

We Ran Some of the Largest Poisson Solves Ever on Summit Supercomputer – Up To 500 Trillion DOFs

- Benchmark standalone MG solver at grid sizes 256³ => 8192³
 - 3D linear solve of Poisson equation $\nabla^2 \phi = \rho$ with sinusoidal solution
- ALMA solutions on Summit are 20x faster than in Theta

Objective : Validating liquid metal MHD benchmark cases

- Validation of Liquid metal MHD code is necessary to address the needs of the blanket design at high Hartmann number of O(10⁴)
- Smolentsev et al. 2015¹ established key cases for verification and validation of Liquid metal MHD codes at fusion-relevant Hartmann number.
 - Fully-developed laminar steady MHD flow (Shercliff and Hunt flow)
 - 3D laminar steady MHD flow
 - Q2D turbulent MHD flow
 - 3D turbulent MHD flow
 - MHD flow with heat transfer

¹Smolentsev, S., Badia, S., Bhattacharya, R., Buhler, L., Chen, L., Huang, Q., Jin, H.G., Krasnov, D., Lee, D.W., Valls, E.M.D.L., 2015. An approach to verification and validation of MHD codes for fusion applications. Fusion Eng. Des. 100

Hartmann-Poiseuille flow

$$\mu \frac{\partial^2 u}{\partial y^2} + B_0 \frac{\partial b_x}{\partial y} = \frac{\partial p}{\partial x} \quad ; \quad B_0 \frac{\partial u}{\partial y} + \eta \frac{\partial^2 b_x}{\partial y^2} = 0$$

With conducting wall BC 1

$$u = \frac{\eta}{B_0^2} \left\{ 1 - \frac{\cosh(Ha\ y)}{\cosh\left\{\frac{Ha}{2}\right\}} \right\} \quad ; \quad b_x = \frac{-1}{B_0} \left\{ y - \frac{\sinh(Ha\ y)}{\operatorname{Ha}\cosh\left\{\frac{Ha}{2}\right\}} \right\}$$

u is the streamwise velocity and b_x is the induced magnetic field

- Magnetic field B_0 is transverse to the flow direction.
- The channel width L is constant
- No-slip condition is imposed at the wall
- Constant pressure gradient -

- Conducting walls :
$$\frac{\partial b_i}{\partial n} = 0$$

- Insulating walls :
$$b_i = 0$$

Reynolds number

$$Re_L = \frac{v_0 L}{v}$$
$$N = \frac{LB_0^2}{\eta \rho_0 v_0}$$

Hartmann number

Interaction parameter

$$Ha = \sqrt{NRe_L}$$

Hartmann-Poiseuille flow : Conducting walls

Hartmann-Poiseuille flow : Insulating walls

Solid lines represent the analytical solution. Dotted line with symbols represent the solution from ALMA

Flow in a 3D periodic square duct

Shercliff's³ case : Insulating side and Hartmann walls

Hunt's case⁴ : Insulating side walls and conducting (c_w =0.01) Hartmann walls

SENERAL ATOMICS

Comparison of flow rates

Shercliff's case : Insulating side and Hartmann walls

На	Q	Q _{analytical}	Error (%)
500	7.68000E-04	7.68000E-04	0
5000	7.90180E-04	7.90200E-04	0.00253
10000	3.965000E-04	3.96500E-04	0

Hunt's case : Conducting Hartmann walls (c_w =0.01) and Insulating side walls

На	Q	Q _{analytical}	Error (%)
500	1.88000E-03	1.86500E-03	1.06
5000	2.0E-05	1.90700E-05	4.9
10000	5.98E-6	5.16900E-06	13.7

3D laminar flow with spatially varying magnetic field

- Domain: $2L \times 2L \times 25L$, where L = 1m
- 5 Ha = 2900 , N = 540, c_w = 0.07
- Background magnetic field : $B_y = 0.5B_0(1 \tanh(0.5(z z_c)))$ (represented using black dashed line below)
- No slip walls
- Results compared against experiments of Reed at al. ALEX results.

Reed at al, ⁵ALEX RESULTS-A COMPARISON OF MEASUREMENTS FROM A ROUND AND A RECTANGULAR DUCT WITH 3-D CODE PREDICTIONS

Ongoing work

3D MHD turbulence: Test parameters adopted from Andreev et al⁶

Re = 4000Ha = 400N = 40

⁶Experimental study of liquid metal channel flow under the influence of a nonuniform magnetic field, Andreev et al, POF, 2006

Preliminary results

Summary and Future Work

- The antisymmetric form of the MHD equations are solved using the ALMA framework
- The method was successfully applied in a laminar MHD flow in 2D channels and 3D ducts, subject to uniform and spatially varying magnetic field.

- Future work includes:
 - Validating the solver for MHD flows that lie in the turbulent regime Q2D and 3D turbulence
 - Simulation of liquid metal flows and plasmas in the presence of time-varying background magnetic field.

Acknowledgement

This material is based upon work supported by General Atomic's internal research and development.

Thank you!

