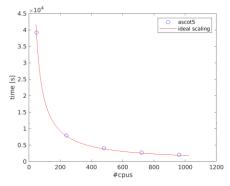
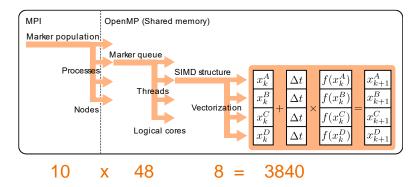


-Numerical models in nutshell -Comparing typical runs -Newest new: ASCOT-BMC, ASCOT-GPU -Code development: git, slack, community

A. Snicker et al.

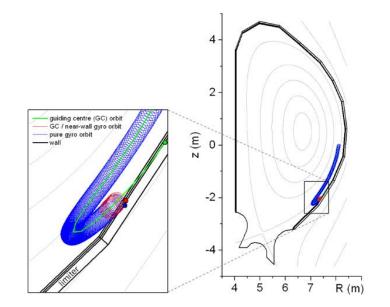

ACADEMY OF FINLAND

24/11/2023 VTT – beyond the obvious



Numerical models, of HPC relevance 1/2

- ASCOT is a Monte Carlo orbit-following code
 - For minority species (like fast-ions)
 - No self-interactions
 - Coulomb collisions with background plasma
 - Near embarrassingly parallel using MPI/MPI+OpenMP
- Several layers of parallelism available in ASCOT5
 - Marker ensemble -> MPI
 - Marker queue -> OpenMP
 - Vectorization -> SIMD


Scalability test of ASCOT5 with the number of CPUs in MARCONI

Numerical models, of HPC relevance 2/2

- Guiding center vs. gyro motion [1]
 - For most applications GC is fine
 - But GC approximation does fail, e.g. [2]
- Running with gyro motion comes with cost
 - Roughly 30-100 times more CPU hours
- Typical tokamak run with 2D axisymmetric field
 - ~30 core hours (100k markers)
- Typical stellarator run with 3D field
 - ~300 core hours (100k markers)
- Additional considerations:
 - Alfven eigenmodes [3] 1D spline per mode
 - ICRH via RFOF operator two-stage simulation process [4]

[1] A. Snicker *et al* 2012 *Nucl. Fusion* **52** 094011

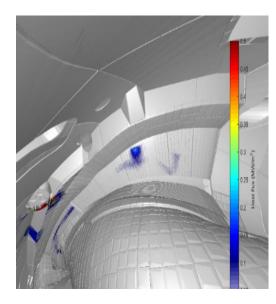
[2] A. Sperduti et al 2021 Nucl. Fusion 61 016028, A Sperduti et al 2021 Plasma Phys. Control. Fusion 63 015015, P Ollus et al 2022 Plasma Phys. Control. Fusion 64 035014

[3] A. Snicker et al 2013 Nucl. Fusion 53 093028

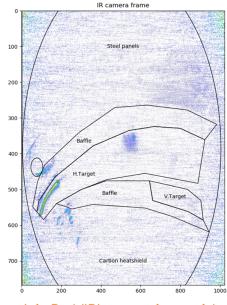
[4] S. Sipilä et al 2021 Nucl. Fusion 61 086026

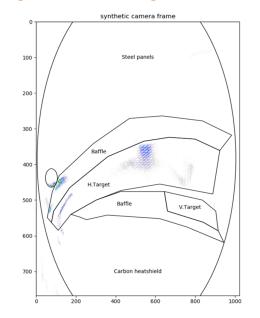
-Numerical models in nutshell -Comparing typical runs -Newest new: ASCOT-BMC, ASCOT-GPU -Code development: git, slack, community

A. Snicker et al.


24/11/2023 VTT – beyond the obvious

ASCOT simulations showcases

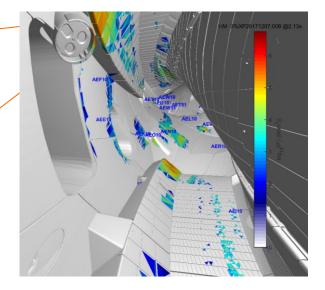

- W7-X wall power load high-definition
 - Example of complex 3D geometry and useful validation
- ASCOT-RFOF for AUG
 - Example of the added CPU demands by IC operator
- ITER FILD simulations
 - Example of the intrinsic Monte Carlo statistics problem


Synthetic IR studies with ASCOT (in W7-X)

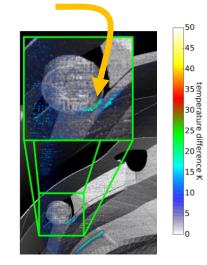
ASCOT'S view of W7-X intestines

InfraRed (IR) camera frame of the same place

ASCOT's synthetic IR camera frame



Wall design improved thanks to ASCOT simulations !


Fragile (sapphire) vacuum windows

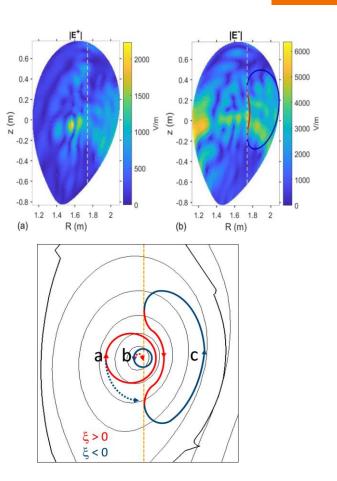
ASCOT predicted excessive NBI power loads → Protective collar installed before starting the beams

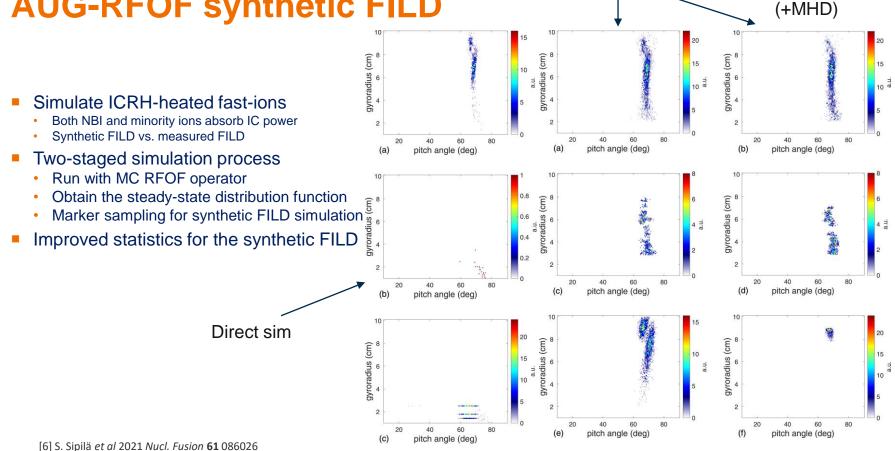
Wendelstein 7-X á l'ASCOT

power loads in excess of 1.5MW/m² measured

[5] S. Äkäslompolo Fusion Eng. and Des. 2019, 146, 862; S. Äkäslompolo et al 2018 Nucl. Fusion 58 082010

Simulation specifications

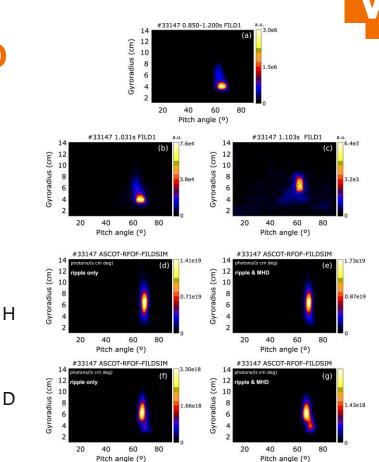

- 1M-100M GC markers
 - Converged peak heat load (100M)
 - Hot spots and estimated peaks (1M)
- CAD 3D wall, ~4M triangles
 - Triangle areas 1 mm² to 0.2 m²
- Simulation was MARCONI commissioning
- Estimated CPU hours: 300k


AUG-RFOF synthetic FILD

Simulate ICRH-heated fast-ions

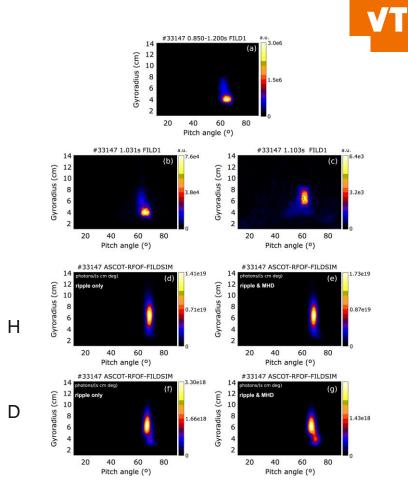
- Both NBI and minority ions absorb IC power
- Synthetic FILD vs. measured FILD
- Two-staged simulation process
 - Run with MC RFOF operator
 - Obtain the steady-state distribution function
 - Marker sampling for synthetic FILD simulation
- Improved statistics for the synthetic FILD

AUG-RFOF synthetic FILD



Sampled sim

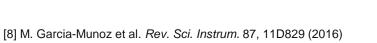
AUG-RFOF synthetic FILD


Simulate ICRH-heated fast-ions

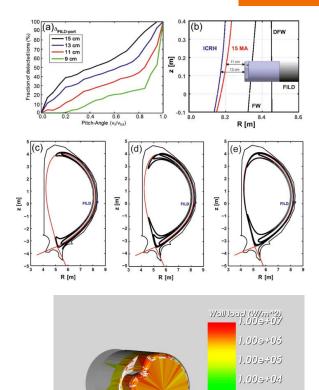
- Both NBI and minority ions absorb IC power
- Synthetic FILD vs. measured FILD
- Two-staged simulation process
 - Run with MC RFOF operator
 - Obtain the steady-state distribution function
 - Marker sampling for synthetic FILD simulation
- Improved statistics for the synthetic FILD
 - Questions remain:
 - What is the actual H population?
 - Why the H tail is simulated higher?

Simulation specifications

- 200k-500k GC markers
 - With MHD 200k, without 500k
 - Sampling: 3k FILD hits=~38M markers
- Simulations in MARCONI fusion
- CPU costs:
 - Heating simulation for H, 55k CPUh
 - FILD simulation for H, 3k CPUh
 - From above: MHD cost=factor of 2.5



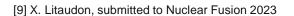
VTT

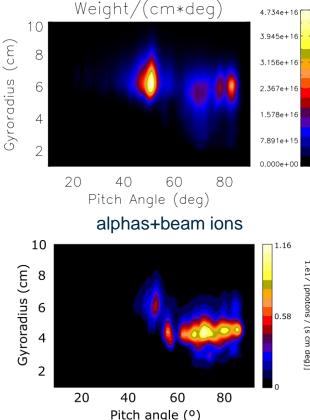

1.009+03

ITER FILD simulations

- Goal: simulate synthetic signal using ASCOT+FILDSIM
- Intrinsic issue: poor statistics of narrow-escape
 - First wall 600? m², FILD head 413 cm², the pinhole 1 cm²
 - Likelihood to hit pinhole (dummy math) 1/10M!!!
- Solution for production runs:
 - Brute-force
 - Running maximum number of markers
- Practical implication:
 - Scans for various scenarios, pinhole geometries etc.
 - Only use high statistics when needed
- Can we do better?
 - · What if we could start our simulation from the pinhole...

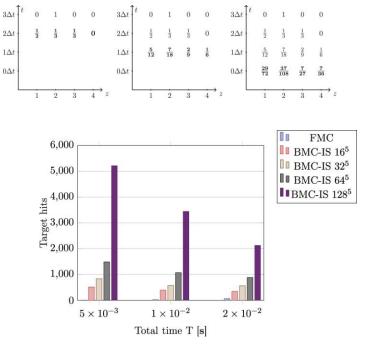
[9] X. Litaudon, submitted to Nuclear Fusion 2023




ITER FILD simulations

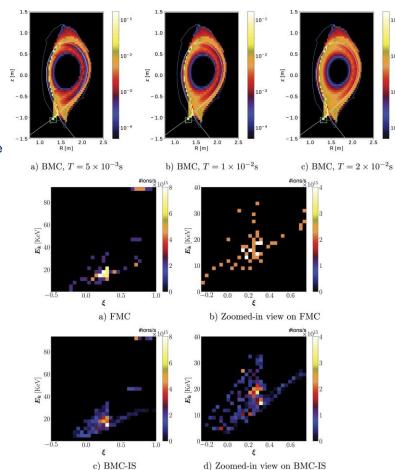
alphas

- Intrinsic issue: poor statistics of narrow-escape
 - First wall 600? m², FILD head 413 cm², the pinhole 1 cm²
 - Likelihood to hit pinhole (dummy math) 1/10M!!! •
- Solution for production runs:
 - Brute-force
 - Running maximum number of markers
- Practical implication:
 - Scans for various scenarios, pinhole geometries etc.
 - Only use high statistics when needed
- Can we do better?
 - What if we could start our simulation from the pinhole...



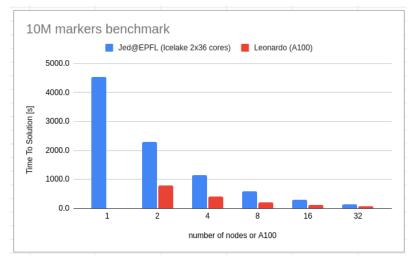
Backwards Monte Carlo

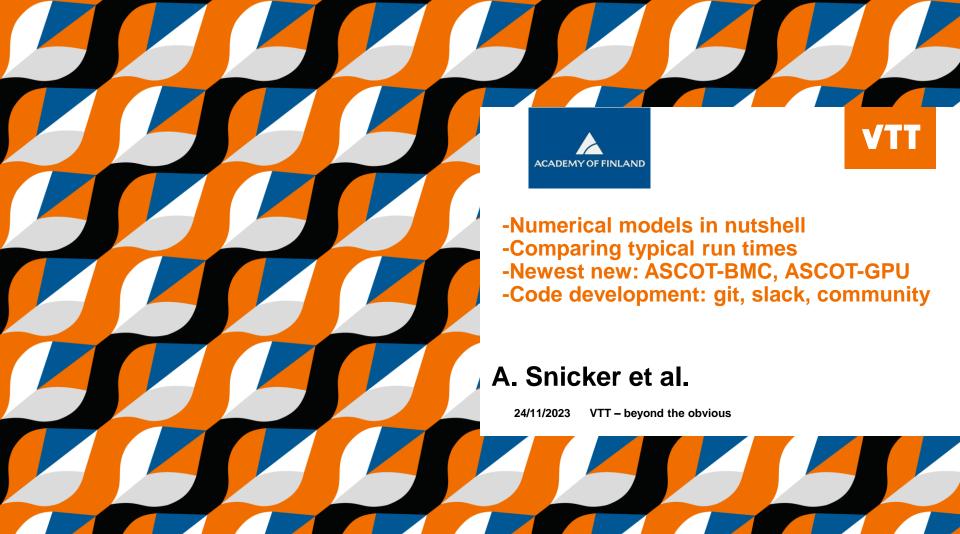
Instead of brute force, use math and computers


- Iterative equations for probability distribution in phase-space
 - Allows to calculate the likelihood for marker from phase-space to the pinhole
 - · Use known birth distribution, convolution of the two will give you a signal
 - Plan B adopted in this publication: use the likelihood to importance sample
- The efficiency increase by a factor of 10-100

VTT

Backwards Monte Carlo

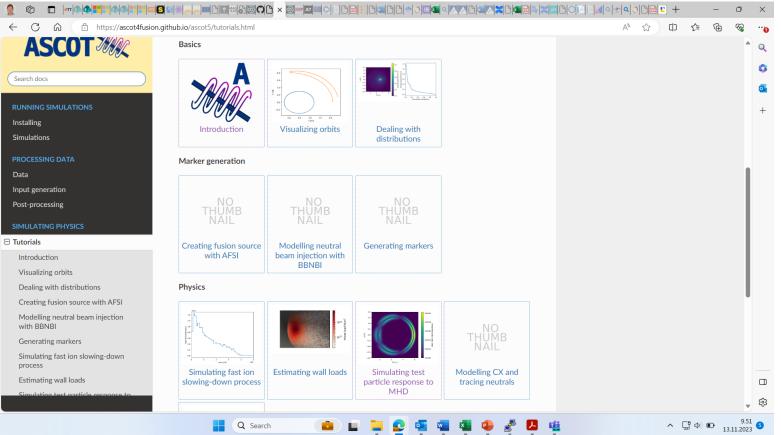

- Instead of brute force, use math and computers
- Iterative equations for probability distribution in phase-space
 - Allows to calculate the likelihood for marker in all phase-space to the pinhole
 - Use known birth distribution, convolution of the two will give you a signal
 - Plan B adopted in this publication: use the likelihood to importance sample
- The efficiency increase by a factor of 10-100
- Shown to reproduce forward model results
- Caveats:
 - Using 2D wall, 3D wall turns to be a nightmare...



[10] F. Zonta et al 2022 Nucl. Fusion 62 026010

ASCOT GPU

- Originally, ASCOT developed for Xeon Phi
- Can we directly use the same parallelism for GPU?
- How efficient the code will be?
- More details were given earlier today by G. Fourestey
- Next steps:
 - Check that the 3D wall and collisions work
 - Merge to main development branch
 - Try production runs?


Ideology of constant development

- Adopting from fission, we need to constantly adapt
 - New supercomputers (the algorithms might not be efficient), e.g. GPU
 - New physics introduced (the code skeleton based on known physics), e.g. ICRH
 - Constant need to adapt to these!
- ASCOT has been built from the scratch twice, during last 10 years
 - ASCOT4 in FORTRAN and MPI around 2013
 - ASCOT5 in C and MPI/OpenMP around 2017
- A large userbase:
 - A set of tutorials to ease the onboarding process
 - Manuals and videos helping
 - Slack and weekly meetings


A new home for the ASCOT - github

- Since October 2023, ASCOT moved to open-source licensing
 - Code is operated under LGPL 3.0 license
 - Currently building the user community there
- Structure of the github:
 - Main branch always stable only pull requests accepted, tags for new releases
 - Hotfixes done under main
 - Develop open for, well, developers
 - · Developers can push, others still need pull request
 - New features under develop in a separate branch
 - Automated testing processes
 - Each push -> testing compilation+fast unit tests (~5min)
 - Pushing to develop -> above + physics tests+tutorials+documentation (~1h)
 - Pull request to main -> above + regression tests (WIP) (~a few days)
 - Each test can be run on will
 - Tutorials and documentation within github

Tutorials within the github - notebooks

Tutorials within the github - notebooks

Documentation within github

C ⋒ ⊡ https://ascot4fu	ision.github.io/ascot5/index.html	AN CO	☆	C	£≡	Ē	~
arch docs	ASCOT5 View page source						Î
tallation							
mpiling on different platforms	ASCOT5						
ittings when compiling	https://github.com/ascot4fusion/ascot5						
OCESSING DATA ta	ASCOT5 is a test-particle orbit-following code for solving minority species' distribution functions, transport, and losses in tokamaks and stellarators. For questions related to the code or physics, please join our Slack channel.						I
out generation st-processing	Getting started						
ULATING PHYSICS	1. Follow the installation instructions and compile the code.						
torials	2. Have some quality time by going through the introductory simulation.						
ysics in ASCOT5	3. Familiarize yourself on how to generate inputs that you need, execute simulations, and post-						
	process the results. Here the examples and the physics documentation as well as the Python						
BLICATIONS	API are good sources of help.						
ing ASCOT5	4. At some point you might also want to publish your work or contribute to the code.						
llery	Features						
DE DEVELOPMENT	1 5464255						
rallelization	ASCOT5 is a test-particle orbit-following code for computing particle orbits in 3D geometry. The						
sting	output includes particle orbits, phase-space distributions, transport coefficients, and wall loads.						
r Developers	ASCOT5 is frequently applied to study fast ions, impurities, neutrals, and runaway electrons in						
	tokamaks and stellarators. Particle orbits are either solved fully, i.e. including the gyro-motion, or in a reduced picture where only the guiding-center trajectory is traced. The code is extensively						
API	parallelized and optimized to support simulations with more than ten million markers.						
/ascot4fusion.github.io/ascot5/physics.html	paranenzed and optimized to support simulations with more than ten minion markers.						

Building the user community

- EUROfusion funded training camps
 - 1st was organized in 2019 (~12 participants)
 - 2nd last week (~25 participants)
- ASCOT is a global project
 - West (Europe, US) and EAST (China)
 - North (Finland)
 - Need some users from Australia or from South-America to cover global South, anyone?
- Casual discussions using slack
- Weekly meetings via zoom

VTT

Building the user community

beyond the obvious

A. Snicker

How to keep up with fast ions in the increasingly complex fusion devices?

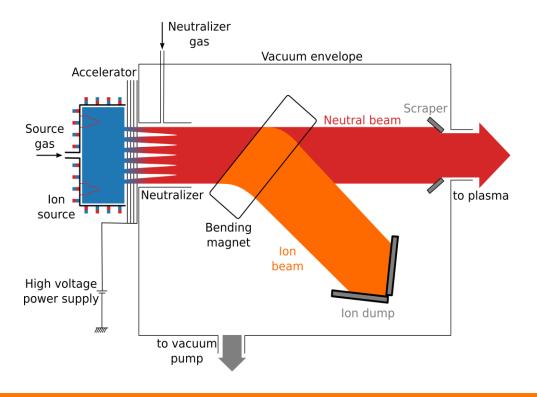
Taina Kurki-Suonio & Antti Snicker Aalto University & VTT

Contents

- ★ What are the *fast ions* in fusion world?
- ★ Going from pen&paper to simulations requiring supercomputing
 - Axisymmetric, circular plasmas (from pen&paper to analytical models)
 - Real-life tokamaks: introduce a variety of mechanism breaking the axisymmetry
 - The ultimate case: stellarator
 - Make contact with the outside world: introduce SOL and the 3D wall structures
 - Accurate power distributions on the first wall: from GC following to resolving gyro orbits
 - Realistic (non-quiescent) plasmas: introduce NTMs, TAEs, turbulence ...

Fast ion in fusion devices

- ★ The fusion plasma as a whole is hot, >10 keV
- ★ To keep it hot, we need to have particles with even higher energies that collisionally heat the fuel plasma to compensate for the inevitable losses' These particles are the *fast ions*
- ★ In today's devices, fast ions are generated externally
- In a fusion reactor, the fast ions are generated by the fusion reactions themselves, and the fusion conditions are self-sustained ...

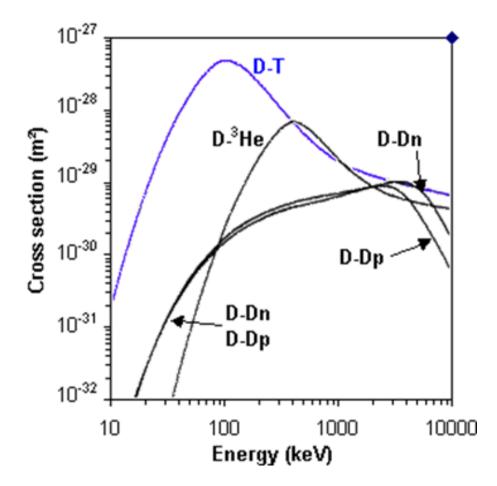


Generating fast ions externally

★ ICRH → minority ions in MeV range

★ Neutral beams:

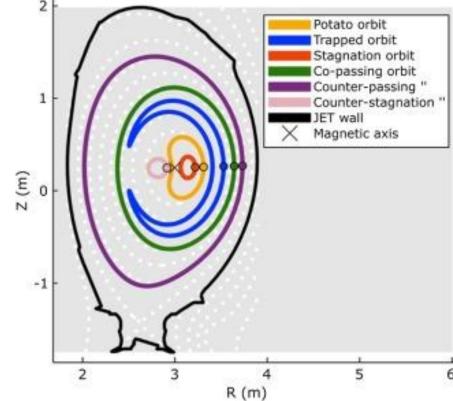
- PNBI → D (~100 keV)
- NNBI → D (~1 MeV)



JET ITER-like antenna

Fast ions from fusion reactions

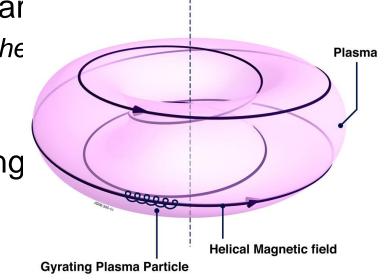
- ★ α's, p's, T's & ³He's in MeV range from fusion reactions – now and in the future:
 - D + D → ³He (0.8 MeV) + n (2.45 MeV)
 - D + D → T (1 MeV) + p (3 MeV)
 - D + T → α (3.5 MeV) + n (14.1 MeV)
 - ³He + D → α (3.6 MeV) + n (14.7 MeV)


Confining fast ions

Axisymmetric tokamak

* 'perfect' confinement

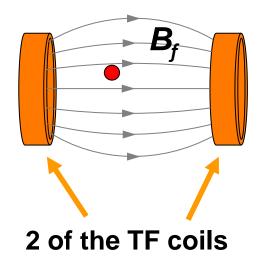
- Mathematically quaranteed: according to Noether's theorem any symmetry is associated with a constant of motion
- In axisymmetric tokamak this is the *toroidal* canonical momentum
- Axisymmetry ensures that the particle *drift orbits* close upon themselves and do not wander radially
- Only Coulomb collisions slowly kick the ions outward


Benjamin et al., Computer Physics Communications 292 (2023) 108893

Simulating fast ions in axisymmetric tokamak...

... is very easy and fast!

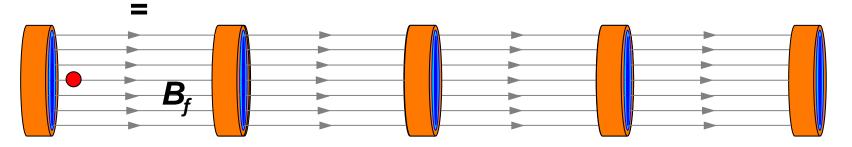
- ★ The toroidal magnetic geometry can be expressed *analytically*
 - No numerical divergence
 - No need for interpolations
- * One can use *field-aligned flux coordinates* in following par
 - Long time steps allowed → Integrating equations of motion for the guiding-centers is very fast
- ★ This approach (ASCOT 1.0 and 2.0) was ok for assessing the zeroth-order effects due to Coulomb collisions:
 - particle "confinement" (staying inside separatrix)
 - power deposition



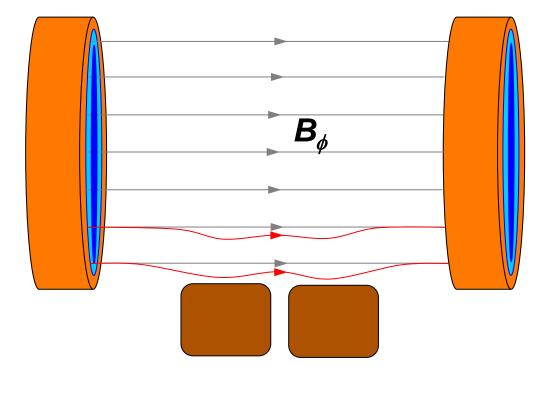
Real tokamaks and real needs, culminating to stellarators...

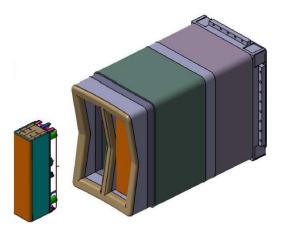
The axisymmetry is broken: Finite number of coils with finite size ...

A finite number of TF coils → non-axisymmetric field, *toroidal magnetic ripple*


The local magnetic "bottle" between two TF coils can trap charged particles, which quickly drift out of the plasma due to vertical grad-B drift.

Banana orbits are no longer guaranteed to close in the poloidal plane and can start wandering even without collisions ...


Trying to fix the broken symmetry: ferritic inserts



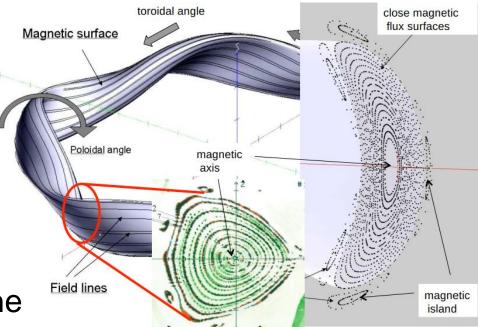
With ferromagnetic steel inserts placed at the coils, the ripple can be minimized.

But that's not all, folks: Test Blanket Modules (TBM)

TBM's containing ferritic steel very close to the plasma are placed at three toroidal locations between TF coils

Let us count our symmetry breakers...

- ★ Finite # of TF coils → TF ripple
- ★ Ferromagnetic components → localized magnetic perturbations
- **★** TBM blocks (or any other material sucking in magnetic field)
- ★ External coils, such as ELM control coils → stochastization of edge magnetic field
- ★ How does the total magnetic field look like?


$B_T(\phi)$ at the OMP separatrix in ITER 9MA Scenario

What are the implications to our simulations?

- ★ Need to tabulate the field & interpolate
- ➔ enormous increase in memory needs
- → good-bye kiss to field-aligned flux coordinates
- \rightarrow we have to keep a keen eye not to have
 - Numerical divergence in the field
 - Numerical drifts
- Fine structures have to be seen and obeyed by the fast ions
- → time step has to be shortened

Prime example of ultimate 3D features: *W7-X stellarator*

And as if that was not enough...

- ★ With a large number of fast ions (in ITER, fast ions account for about 1/3 of the total pressure), one has to worry about power loads to the first wall
 - Both the peak power load evaluations and synthetic lost-ion diagnostics require a highfidelity first wall
 - For well-confined (= relevant plasmas), a very large particle ensemble is needed to yield reasonable statistics at the wall
 - → parallelizations, vectorizationsy, GPUs.... (this is why ASCOT5 was born)
- ★ ASCOT only includes neoclassical physics, while real plasmas have much more character: *turbulence*, NTMs, TAEs, ...

Including additional physics always has a computational cost – either in CPU/GPU time or memory consumption. Or both...

And now to Antti ...